Skip to main content
Log in

Excitonic processes at organic heterojunctions

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Understanding excitonic processes at organic heterojunctions is crucial for development of organic semiconductor devices. This article reviews recent research on excitonic physics that involve intermolecular charge transfer (CT) excitons, and progress on understanding relationships between various interface energy levels and key parameters governing various competing interface excitonic processes. These interface excitonic processes include radiative exciplex emission, nonradiative recombination, Auger electron emission, and CT exciton dissociation. This article also reviews various device applications involving interface CT excitons, such as organic light-emitting diodes (OLEDs), organic photovoltaic cells, organic rectifying diodes, and ultralow-voltage Auger OLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, and A. G. Rinzler, Science 332, 570 (2011).

    Article  ADS  Google Scholar 

  2. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).

    Article  ADS  Google Scholar 

  3. B. Kippelen, and J. L. Brédas, Energ. Environ. Sci. 2, 251 (2009).

    Article  Google Scholar 

  4. X. Y. Zhu, Q. Yang, and M. Muntwiler, Acc. Chem. Res. 42, 1779 (2009).

    Article  Google Scholar 

  5. J. F. Wang, Y. Kawabe, S. E. Shaheen, M. M. Morrell, G. E. Jabbour, P. A. Lee, J. Anderson, N. R. Armstrong, B. Kippelen, E. A. Mash, and N. Peyghambarian, Adv. Mater. 10, 230 (1998).

    Article  Google Scholar 

  6. M. Cocchi, D. Virgili, G. Giro, V. Fattori, P. Di Marco, J. Kalinowski, and Y. Shirota, Appl. Phys. Lett. 80, 2401 (2002).

    Article  ADS  Google Scholar 

  7. K. Goushi, K. Yoshida, K. Sato, and C. Adachi, Nat. Photon. 6, 253 (2012).

    Article  ADS  Google Scholar 

  8. K. Goushi, and C. Adachi, Appl. Phys. Lett. 101, 023306 (2012).

    Article  ADS  Google Scholar 

  9. X. K. Liu, Z. Chen, C. J. Zheng, C. L. Liu, C. S. Lee, F. Li, X. M. Ou, and X. H. Zhang, Adv. Mater. 27, 2378 (2015).

    Article  Google Scholar 

  10. D. Chen, G. Xie, X. Cai, M. Liu, Y. Cao, and S. J. Su, Adv. Mater. 28, 239 (2016).

    Article  Google Scholar 

  11. T. Kirchartz, K. Taretto, and U. Rau, J. Phys. Chem. C 113, 17958 (2009).

    Article  Google Scholar 

  12. C. Deibel, T. Strobel, and V. Dyakonov, Adv. Mater. 22, 4097 (2010).

    Article  Google Scholar 

  13. S. J. He, R. White, D. K. Wang, J. Zhang, N. Jiang, and Z. H. Lu, Org. Electron. 15, 3370 (2014).

    Article  Google Scholar 

  14. A. K. Pandey, and J. M. Nunzi, Adv. Mater. 19, 3613 (2007).

    Article  Google Scholar 

  15. S. J. He, D. K. Wang, N. Jiang, J. Zhang, and Z. H. Lu, Phys. Rev. Appl. 3, 054011 (2015).

    Article  ADS  Google Scholar 

  16. S. J. He, and Z. H. Lu, J. Photon. Energ. 6, 036001 (2016).

    Article  ADS  Google Scholar 

  17. G. L. Ingram, C. Nguyen, and Z. H. Lu, Phys. Rev. Appl. 5, 064002 (2016).

    Article  ADS  Google Scholar 

  18. G. L. Ingram, and Z. H. Lu, Org. Electron. 50, 48 (2017).

    Article  Google Scholar 

  19. A. Niwa, T. Kobayashi, T. Nagase, K. Goushi, C. Adachi, and H. Naito, Appl. Phys. Lett. 104, 213303 (2014).

    Article  ADS  Google Scholar 

  20. S. J. He, D. K. Wang, N. Jiang, J. S. Tse, and Z. H. Lu, Adv. Mater. 28, 649 (2016).

    Article  Google Scholar 

  21. A. Weller, Singlet-and Triplet-State Exciplexes (Academic Press Inc., London, 1975), pp. 23–38.

    Google Scholar 

  22. D. Veldman, S. C. J. Meskers, and R. A. J. Janssen, Adv. Funct. Mater. 19, 1939 (2009).

    Article  Google Scholar 

  23. T. M. Burke, S. Sweetnam, K. Vandewal, and M. D. McGehee, Adv. Energ. Mater. 5, 1500123 (2015).

    Article  Google Scholar 

  24. N. F. Mott, and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford University Press, Oxford, 2012).

    Google Scholar 

  25. S. J. He, D. K. Wang, N. Jiang, and Z. H. Lu, J. Phys. Chem. C 120, 21325 (2016).

    Article  Google Scholar 

  26. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons Inc, Hoboken, 2006).

    Book  Google Scholar 

  27. M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999).

    Google Scholar 

  28. L. W. Wang, M. Califano, A. Zunger, and A. Franceschetti, Phys. Rev. Lett. 91, 056404 (2003).

    Article  ADS  Google Scholar 

  29. R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Phys. Rev. Lett. 106, 037404 (2011), arXiv: 1009.2297.

    Article  ADS  Google Scholar 

  30. C. Deibel, T. Strobel, and V. Dyakonov, Phys. Rev. Lett. 103, 036402 (2009).

    Article  ADS  Google Scholar 

  31. J. C. Blakesley, and D. Neher, Phys. Rev. B 84, 075210 (2011).

    Article  ADS  Google Scholar 

  32. P. Li, W. Hong, Y. Li, G. Ingram, and Z. H. Lu, Adv. Electron. Mater. 3, 1700115 (2017).

    Article  Google Scholar 

  33. Y. S. Park, W. I. Jeong, and J. J. Kim, J. Appl. Phys. 110, 124519 (2011).

    Article  ADS  Google Scholar 

  34. D. Y. Zhou, H. Zamani Siboni, Q. Wang, L. S. Liao, and H. Aziz, J. Phys. Chem. C 118, 24006 (2014).

    Article  Google Scholar 

  35. H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, and J. J. Kim, Adv. Mater. 26, 4730 (2014).

    Article  Google Scholar 

  36. K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim, and J. J. Kim, Adv. Mater. 26, 3844 (2014).

    Article  Google Scholar 

  37. K. H. Kim, S. Lee, C. K. Moon, S. Y. Kim, Y. S. Park, J. H. Lee, J. Woo Lee, J. Huh, Y. You, and J. J. Kim, Nat. Commun. 5, 4769 (2014).

    Article  Google Scholar 

  38. X. K. Liu, Z. Chen, C. J. Zheng, M. Chen, W. Liu, X. H. Zhang, and C. S. Lee, Adv. Mater. 27, 2025 (2015).

    Article  Google Scholar 

  39. K. H. Kim, S. J. Yoo, and J. J. Kim, Chem. Mater. 28, 1936 (2016).

    Article  Google Scholar 

  40. H. Nakanotani, T. Furukawa, K. Morimoto, and C. Adachi, Sci. Adv. 2, e1501470 (2016).

    Article  ADS  Google Scholar 

  41. I. H. Campbell, and B. K. Crone, Appl. Phys. Lett. 101, 023301 (2012).

    Article  ADS  Google Scholar 

  42. S. Sampat, A. D. Mohite, B. Crone, S. Tretiak, A. V. Malko, A. J. Taylor, and D. A. Yarotski, J. Phys. Chem. C 119, 1286 (2015).

    Article  Google Scholar 

  43. A. Kumar, G. Pace, A. A. Bakulin, J. Fang, P. K. H. Ho, W. T. S. Huck, R. H. Friend, and N. C. Greenham, Energ. Environ. Sci. 6, 1589 (2013).

    Article  Google Scholar 

  44. W. Nie, G. Gupta, B. K. Crone, F. Liu, D. L. Smith, P. P. Ruden, C. Y. Kuo, H. Tsai, H. L. Wang, H. Li, S. Tretiak, and A. D. Mohite, Adv. Sci. 2, 1500024 (2015).

    Article  Google Scholar 

  45. H. Kleemann, S. Schumann, U. Jörges, F. Ellinger, K. Leo, and B. Lüssem, Org. Electron. 13, 1114 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ShouJie He or ZhengHong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Lu, Z. Excitonic processes at organic heterojunctions. Sci. China Phys. Mech. Astron. 61, 027301 (2018). https://doi.org/10.1007/s11433-017-9110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9110-x

Keywords

Navigation