Skip to main content
Log in

Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

After successfully growing single-crystal TaP, we measured its longitudinal resistivity (ρ xx ) and Hall resistivity (ρ yx ) at magnetic fields up to 9 T in the temperature range of 2-300 K. At 8 T, the magnetoresistance (MR) reached 3.28 × 105% at 2 K, 176% at 300 K. Neither value appeared saturated. We confirmed that TaP is a hole-electron compensated semimetal with a low carrier concentration and high hole mobility of μ h=3.71 × 105 cm2/V s, and found that a magnetic-field-induced metal-insulator transition occurs at room temperature. Remarkably, because a magnetic field (H) was applied in parallel to the electric field (E), a negative MR due to a chiral anomaly was observed and reached -3000% at 9 T without any sign of saturation, either, which is in contrast to other Weyl semimetals (WSMs). The analysis of the Shubnikov-de Haas (SdH) oscillations superimposed on the MR revealed that a nontrivial Berry’s phase with a strong offset of 0.3958, which is the characteristic feature of charge carriers enclosing a Weyl node. These results indicate that TaP is a promising candidate not only for revealing fundamental physics of the WSM state but also for some novel applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Murakami, New J. Phys. 9, 356 (2007).

    Article  ADS  Google Scholar 

  2. L. Balents, Physics 4, 36 (2011).

    Article  Google Scholar 

  3. A. A. Burkov, and L. Balents, Phys. Rev. Lett. 107, 127205 (2011).

    Article  ADS  Google Scholar 

  4. A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84, 235126 (2011).

    Article  ADS  Google Scholar 

  5. G. B. Halasz, and L. Balents, Phys. Rev. B 85, 035103 (2012).

    Article  ADS  Google Scholar 

  6. X. G. Wan, A. M. Turner, A. Vishwanath, and S. Savrasov, Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  7. G. Xu, H. M. Weng, Z. J. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011).

    Article  ADS  Google Scholar 

  8. J. P. Liu, and D. Vanderbilt, Phys. Rev. B 90, 155316 (2014).

    Article  ADS  Google Scholar 

  9. H. M. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  10. S. M. Huang, S. Y. Xu, I. Belopolski, C. C. Lee, G. Q. Chang, B. K. Wang, N. Alidoust, G. Bian, M. Neupane, C. L. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).

    Article  ADS  Google Scholar 

  11. B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Nat. Phys. 11, 724 (2015).

    Article  Google Scholar 

  12. C. Shekhar, A. K. Nayak, Y. Sun, M. Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J. Wosnitza, Z. K. Liu, Y. L. Chen, W. Schnelle, H. Borrmann, Y. Grin, C. Felser, and B. H. Yan, Nat. Phys. 11, 645 (2015).

    Article  Google Scholar 

  13. X. C. Huang, L. X. Zhao, Y.J. Long, P. P. Wang, D. Chen, Z. H. Yang, H. Liang, M. Q. Xue, H. M. Weng, Z. Fang, X. Dai, and G. F. Chen, Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  14. C. L. Zhang, Z. J. Yuan, S. Y. Xu, Z. Q. Lin, B. B. Tong, M. Z. Hasan, J. F.Wang, C. Zhang, and S. Jia, [arXiv: 1502.00251].

  15. Z. Wang, Y. Zheng, Z. X. Shen, Y. Zhou, X. J. Yang, Y. P. Li, C. M. Feng, and Z. A. Xu, [arXiv: 1506.00924].

  16. J. E. Lenz, Proc. IEEE 78, 973 (1990).

    Article  ADS  Google Scholar 

  17. Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, Nature 380, 141 (1996).

    Article  ADS  Google Scholar 

  18. J. Daughton, J. Magn. Magn. Mater. 192, 334 (1999).

    Article  ADS  Google Scholar 

  19. W. F. Egeihoff, T. Ha, R. D. K. Misra, Y. Kadmon, J. Nir, C. J. Powell, M. D. Stiles, R. D. McMichael, C. L. Lin, J. M. Sivertsen, J. H. Judy, K. Takano, A. E. Berkowitz, T. C. Anthony, and J. A. Brug, J. Appl. Phys. 78, 273 (1995).

    Article  ADS  Google Scholar 

  20. A. P. Ramirez, R. J. Cava, and J. Krajewski, Nature 386, 156 (1997).

    Article  ADS  Google Scholar 

  21. S. Jin, M. McCormack, T. H. Tiefel, and R. Ramesh, J. Appl. Phys. 76, 6929 (1994).

    Article  ADS  Google Scholar 

  22. F. Y. Yang, K. Liu, K. M. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science 284, 1335 (1999).

    Article  ADS  Google Scholar 

  23. R. Xu, A. Husmann, T. F. Rosenbaum, M. L. Saboungi, J. E. Enderby, and P. B. Littlewood, Nature 390, 57 (1997).

    Article  ADS  Google Scholar 

  24. S. Ishiwata, Y. Shiomi, J. S. Lee, M. S. Bahramy, T. Suzuki, M. Uchida, R. Arita, Y. Taguchi, and Y. Tokura, Nat. Mater. 12, 512 (2013).

    Article  ADS  Google Scholar 

  25. S. A. Solin, T. Thio, D. R. Hines, and J. J. Heremans, Science 289, 1530 (2000).

    Article  ADS  Google Scholar 

  26. M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gibson, L. M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N. P. Ong, and R. J. Cava, Nature 514, 205 (2014).

    ADS  Google Scholar 

  27. X. J. Yang, Y. P. Li, Z. Wang, Y. Zhen, and Z. A. Xu, [arXiv: 1506.02283].

  28. Y. Kopelevich, V. V. Lemanov, S. Moehleche, and H. S. Torres, Phys. Solid State 41, 1959 (1999).

    Article  ADS  Google Scholar 

  29. Y. Kopelevich, J. H. S. Torres, R. R. da Sila, F. Wrowka, H. Kempa, and P. Esqyuinazi, Phys. Rev. Lett. 90, 156402 (2003).

    Article  ADS  Google Scholar 

  30. W. Zhang, R. Yu, W. X. Feng, Y. Q. Yao, H. M. Weng, X. Dai, and Z. Fang, Phys. Rev. Lett. 106, 156808 (2011).

    Article  ADS  Google Scholar 

  31. L. P. He, X. C. Hong, J. K. Dong, J. Pan, Z. Zhang, J. Zhang, and S. Y. Li, Phys. Rev. Lett. 113, 246402 (2014).

    Article  ADS  Google Scholar 

  32. N. J. Ghimire, Y. K. Luo, M. Neupane, D. J. Williams, E. D. Bauer, and F. Ronning, J. Phys. Condens. Matter 27, 152201 (2015).

    Article  ADS  Google Scholar 

  33. A. B. Pippard, Magnetoresitance in Metals (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  34. N. Ramakrishnan, M. Milletari, and S. Adam, [arXiv: 1501.03815].

  35. C. M. Hurd, The Hall Effect in Metals and Alloys (Cambridge University Press, Cambridge, 1972).

    Book  Google Scholar 

  36. S. Adler, Phys. Rev. 177, 2426 (1969).

    Article  ADS  Google Scholar 

  37. J. S. Bell, and R. Jackiw, Nuovo Cimento A 60, 4 (1969).

    Google Scholar 

  38. N. Xu, H. M. Weng, B. Q. Lv, C. Matt, J. Park, F. Bisti, V. N. Strocov, D. gawryluk, E. Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autes, O. V. Yazyev, Z. Fang, X. Dai, G. Aeppli1, T. Qian, J. Mesot, H. Ding, and M. Shi, [arXiv: 1507.03983].

  39. H. J. Kim, K. S. Kim, J. F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Phys. Rev. Lett. 111, 246603 (2013).

    Article  ADS  Google Scholar 

  40. G. P. Mikitik, Y. V. Sharlai, Phys. Rev. Lett. 82, 2147 (1999).

    Article  ADS  Google Scholar 

  41. G. P. Mikitik, Y. V. Sharlai, Phys. Rev. Lett. 93, 106403 (2004).

    Article  ADS  Google Scholar 

  42. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  43. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).

    Article  ADS  Google Scholar 

  44. H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Science 342, 1490 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingHu Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Wang, H., Chen, Q. et al. Large unsaturated positive and negative magnetoresistance in Weyl semimetal TaP. Sci. China Phys. Mech. Astron. 59, 657406 (2016). https://doi.org/10.1007/s11433-016-5798-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-016-5798-4

Keywords

Navigation