Skip to main content
Log in

Lagrangian view of time irreversibility of fluid turbulence

  • Invited Review
  • Fluid Dynamics/The 6th Tsien Hsue Shen Memorial Lecture
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A turbulent flow is maintained by an external supply of kinetic energy, which is eventually dissipated into heat at steep velocity gradients. The scale at which energy is supplied greatly differs from the scale at which energy is dissipated, the more so as the turbulent intensity (the Reynolds number) is larger. The resulting energy flux over the range of scales, intermediate between energy injection and dissipation, acts as a source of time irreversibility. As it is now possible to follow accurately fluid particles in a turbulent flow field, both from laboratory experiments and from numerical simulations, a natural question arises: how do we detect time irreversibility from these Lagrangian data? Here we discuss recent results concerning this problem. For Lagrangian statistics involving more than one fluid particle, the distance between fluid particles introduces an intrinsic length scale into the problem. The evolution of quantities dependent on the relative motion between these fluid particles, including the kinetic energy in the relative motion, or the configuration of an initially isotropic structure can be related to the equal-time correlation functions of the velocity field, and is therefore sensitive to the energy flux through scales, hence to the irreversibility of the flow. In contrast, for singleparticle Lagrangian statistics, the most often studied velocity structure functions cannot distinguish the “arrow of time”. Recent observations from experimental and numerical simulation data, however, show that the change of kinetic energy following the particle motion, is sensitive to time-reversal. We end the survey with a brief discussion of the implication of this line of work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. D. Landau, and E. M. Lifshitz, Fluid Mechanics (Butterworth-Heinemann, Oxford, 1987).

    MATH  Google Scholar 

  2. L. D. Landau, and E. M. Lifshitz, Statistical Physics (Butterworth-Heinemann, Oxford, 1980).

    Google Scholar 

  3. B. Derrida, J. Stat. Mech. Theor. Exp. 9, P07023 (2007).

    MathSciNet  Google Scholar 

  4. S. Ciliberto, S. Joubaud, and A. Petrosyan, J. Stat. Mech. 12, P12003 (2010).

    Article  Google Scholar 

  5. T. Tennekes, and J. L. Lumley, A First Course in Turbulence (The MIT Press, Cambridge, 1972).

    Google Scholar 

  6. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995).

    MATH  Google Scholar 

  7. S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  8. R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).

    Article  ADS  Google Scholar 

  9. G. Boffetta, and R. E. Ecke, Annu. Rev. Fluid Mech. 44, 417 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  10. H. A. Rose, and P. L. Sulem, J. Phys. 39, 441 (1978).

    Article  MathSciNet  Google Scholar 

  11. A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR 30, 301 (1941).

    ADS  Google Scholar 

  12. A. N. Kolmogorov, Dokl. Akad. Nauk. SSSR 32, 16 (1941).

    ADS  MATH  Google Scholar 

  13. G. Falkovich, K. Gawedzki, and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. J. Mann, S. Ott, and J. S. Andersen, Experimental study of relative, turbulent diffusion. Technical Report, Risø-R-1036(EN), (Risø National Laboratory, 1999).

    Google Scholar 

  15. A. La Porta, G. A. Voth, A. M. Crawford, J. Alexander, and E. Bodenschatz, Nature 409, 1017 (2001).

    Article  ADS  Google Scholar 

  16. N. Mordant, P. Metz, O. Michel, and J. F. Pinton, Phys. Rev. Lett. 87, 214501 (2001).

    Article  ADS  Google Scholar 

  17. B. Lüthi, A. Tsinober, and W. Kinzelbach, J. Fluid Mech. 528, 87 (2005).

    Article  ADS  MATH  Google Scholar 

  18. M. Bourgoin, N. T. Ouellette, H. Xu, J. Berg, and E. Bodenschatz, Science 311, 835 (2006).

    Article  ADS  Google Scholar 

  19. R. Volk, N. Mordant, G. Verhille, and J. F. Pinton, Europhys. Lett. 81, 34002 (2008).

    Article  ADS  Google Scholar 

  20. H. Xu, A. Pumir, and E. Bodenschatz, Nat. Phys. 7, 709 (2011).

    Article  Google Scholar 

  21. P. K. Yeung, and S. B. Pope, J. Fluid Mech. 207, 531 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Pumir, B. I. Shraiman, and M. Chertkov, Phys. Rev. Lett. 85, 5324 (2000).

    Article  ADS  Google Scholar 

  23. P. K. Yeung, and M. S. Borgas, J. Fluid Mech. 503, 93 (2004).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and F. Toschi, Phys. Fluids 17, 111701 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  25. J. F. Hackl, P. K. Yeung, and B. L. Sawford, Phys. Fluids 23, 065103 (2011).

    Article  ADS  Google Scholar 

  26. G. Falkovich, H. Xu, A. Pumir, E. Bodenschatz, L. Biferale, G. Boffetta, A. S. Lanotte, and F. Toschi, Phys. Fluids 24, 055102 (2012).

    Article  ADS  Google Scholar 

  27. L. F. Richardson, Proc. Roy. Soc. Lond. A 110, 709 (1926).

    Article  ADS  Google Scholar 

  28. B. L. Sawford, Annu. Rev. Fluid Mech. 33, 289 (2001).

    Article  ADS  Google Scholar 

  29. L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and F. Toschi, Phys. Fluids 17, 115101 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  30. B. L. Sawford, P. K. Yeung, and J. F. Hackl, Phys. Fluids 19, 065111 (2008).

    Article  ADS  Google Scholar 

  31. J. P. L. C. Salazar, and L. R. Collins, Annu. Rev. Fluid Mech. 41, 405 (2009).

    Article  ADS  Google Scholar 

  32. F. Toschi, and E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Bitane, H. Homman, and J. Bec, Phys. Rev. E 86, 045302 (2012).

    Article  ADS  Google Scholar 

  34. G. L. Eyink, Phys. Rev. E 83, 056405 (2011).

    Article  ADS  Google Scholar 

  35. G. I. Taylor, Proc. Lond. Math. Soc. 20, 196 (1922).

    Article  Google Scholar 

  36. G. K. Batchelor, Q. J. R. Meteorol, Soc. 76, 133 (1950).

    Google Scholar 

  37. G. K. Batchelor, Proc. Camb. Phil. Soc. 48, 345 (1952).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. A. S. Monin, and A. M. Yaglom. Statistical Fluid Mechanics, volume 2 (MIT Press, Cambridge, 1975).

    Google Scholar 

  39. A. Pumir, B. I. Shraiman, and M. Chertkov, Europhys. Lett. 56, 379 (2001).

    Article  ADS  Google Scholar 

  40. H. Xu, N. T. Ouellette, and E. Bodenschatz, New J. Phys. 10, 013012 (2008).

    Article  ADS  Google Scholar 

  41. B. L. Sawford, P. K. Yeung, and M. S. Borgas, Phys. Fluids 17, 095109 (2005).

    Article  ADS  Google Scholar 

  42. J. Berg, B. Lüthi, J. Mann, and S. Ott, Phys. Rev. E 74, 016304 (2006).

    Article  ADS  Google Scholar 

  43. A. D. Bragg, P. J. Ireland, and L. R. Collins, arXiv: 1403.5502 (2014).

    Google Scholar 

  44. J. Jucha, H. Xu, A. Pumir, and E. Bodenschatz, Phys. Rev. Lett. 113, 054501 (2014).

    Article  ADS  Google Scholar 

  45. G. Falkovich, and A. Frishman, Phys. Rev. Lett. 110, 214502 (2013).

    Article  ADS  Google Scholar 

  46. A. Frishman, and G. Falkovich, Phys. Rev. Lett. 113, 024501 (2014).

    Article  ADS  Google Scholar 

  47. P. Castiglione, and A. Pumir, Phys. Rev. E 64, 056303 (2001).

    Article  ADS  Google Scholar 

  48. M. Chertkov, A. Pumir, and B. I. Shraiman, Phys. Fluids 11, 2394 (1999).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. A. Pumir, E. Bodenschatz, and H. Xu, Phys. Fluids 25, 035101 (2013).

    Article  ADS  Google Scholar 

  50. B. Lüthi, S. Ott, J. Berg, and J. Mann, J. Turbul. 8, 45 (2007).

    Article  Google Scholar 

  51. R. Betchov, J. Fluid Mech. 1, 497 (1956).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. E. D. Siggia, Phys. Fluids 24, 1934 (1981).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  53. R. M. Kerr, Phys. Rev. Lett. 59, 783 (1987).

    Article  ADS  Google Scholar 

  54. A. Tsinober, E. Kit, and T. Dracos, J. Fluid Mech. 242, 169 (1992).

    Article  ADS  Google Scholar 

  55. P. Vieillefosse, Phys. A 125, 150 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  56. B. J. Cantwell, Phys. Fluids A 4, 782 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  57. C. Meneveau, Annu. Rev. Fluid Mech. 43, 219 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  58. E. D. Siggia, J. Fluid Mech. 107, 375 (1981).

    Article  ADS  MATH  Google Scholar 

  59. W. T. Ashurst, A. R. Kerstein, R. M. Kerr, and C. H. Gibson, Phys. Fluids 30, 2343 (1987).

    Article  ADS  Google Scholar 

  60. A. Tsinober, An Informal Conceptual Introduction to Turbulence (Springer, Berlin, 2009).

    Book  MATH  Google Scholar 

  61. A. Pumir, and A. Naso, C. R. Phys. 13, 889 (2012).

    Article  ADS  Google Scholar 

  62. L. Chevillard, and C. Meneveau, Phys. Fluids 23, 101704 (2011).

    Article  ADS  Google Scholar 

  63. A. Pumir, and M. Wilkinson, New J. Phys. 13, 093030 (2011).

    Article  ADS  Google Scholar 

  64. R. Ni, N. T. Ouellette, and G. A. Voth, J. Fluid Mech. 743, R3 (2014).

    Article  ADS  Google Scholar 

  65. R. Ni, S. Kramel, N. T. Ouellette, and G. A. Voth, J. Fluid Mech. 766, 202 (2015).

    Article  ADS  Google Scholar 

  66. R. Zimmermann, Y. Gasteuil, M. Bourgoin, R. Volk, A. Pumir, and J. F. Pinton, Phys. Rev. Lett. 106, 154501 (2011).

    Article  ADS  Google Scholar 

  67. S. Klein, M. Gibert, A. Berut, and E. Bodenschatz, Meas. Sci. Technol. 24, 024006 (2013).

    Article  ADS  Google Scholar 

  68. G. Bellani, and E. A. Variano, New J. Phys. 14, 125009 (2012).

    Article  ADS  Google Scholar 

  69. L. Chevillard, and C. Meneveau, J. Fluid Mech. 737, 571 (2013).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  70. K. Gustavsson, J. Einarsson, and B. Mehlig, Phys. Rev. Lett. 112, 014501 (2014).

    Article  ADS  Google Scholar 

  71. G. G. Marcus, S. Parsa, S. Kramel, R. Ni, and G. A. Voth, New J. Phys. 16, 102001 (2014).

    Article  ADS  Google Scholar 

  72. B. J. Devenish, Phys. Rev. Lett. 110, 064504 (2013).

    Article  ADS  Google Scholar 

  73. B. L. Sawford, S. B. Pope, and P. K. Yeung, Phys. Fluids 25, 055101 (2013).

    Article  ADS  Google Scholar 

  74. P. K. Yeung, Annu. Rev. Fluid Mech. 34, 115 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  75. L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and F. Toschi, Phys. Rev. Lett. 93, 064502 (2004).

    Article  ADS  Google Scholar 

  76. H. Xu, M. Bourgoin, N. T. Ouellette, and E. Bodenschatz, Phys. Rev. Lett. 96, 024503 (2006).

    Article  ADS  Google Scholar 

  77. K. P. Zybin, and V. A. Sirota, Phys. Rev. Lett. 104, 154501 (2010).

    Article  ADS  Google Scholar 

  78. G. W. He, Phys. Rev. E 83, 025301 (2011).

    Article  ADS  Google Scholar 

  79. M. S. Borgas, Phil. Trans. R. Soc. Lond. A 342, 379 (1993).

    Article  ADS  MATH  Google Scholar 

  80. L. Chevillard, S. G. Roux, E. Leveque, N. Mordant, J. F. Pinton, and A. Arneodo, Phys. Rev. Lett. 91, 214502 (2003).

    Article  ADS  Google Scholar 

  81. L. Chevillard, B. Castaing, A. Arneodo, E. Leveque, J. F. Pinton, and S. G. Roux, C. R. Phys. 13, 899 (2012).

    Article  ADS  Google Scholar 

  82. A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  83. B. L. Sawford, and P. K. Yeung, Phys. Fluids 23, 091704 (2011).

    Article  ADS  Google Scholar 

  84. H. Xu, A. Pumir, G. Falkovich, E. Bodenschatz, M. Shats, H. Xia, N. Francois, and G. Boffetta, Proc. Natl. Acad. Sci. 111, 7558 (2014).

    Article  ADS  Google Scholar 

  85. N. Mordant, Mesure Lagrangienne en Turbulence: Mise en oeuvre et Analyse, Dissertation for the Doctoral Degree (Ecole Normale Supérieure de Lyon, Lyon, 2001).

    Google Scholar 

  86. E. Leveque, and A. Naso, Europhys. Lett. 108, 54004 (2014).

    Article  ADS  Google Scholar 

  87. A. Pumir, H. Xu, G. Boffetta, G. Falkovich, and E. Bodenschatz, Phys. Rev. X 4, 041006 (2014).

    Google Scholar 

  88. J. Leray, Acta. Math. 63, 193 (1934).

    Article  MATH  MathSciNet  Google Scholar 

  89. C. L. Fefferman, The Millennium Prize Problems (Clay Mathematics Institute, Cambridge, 2006), pp. 57–67.

    MATH  Google Scholar 

  90. A. Tsinober, P. Vedula, and P. K. Yeung, Phys. Fluids 13, 1974 (2001).

    Article  ADS  Google Scholar 

  91. G. Gulitski, M. Kholmyansky, W. Kinzelbach, B. Lüthi, A. Tsinober, and S. Yorish, J. Fluid Mech. 589, 83 (2007).

    ADS  MATH  Google Scholar 

  92. G. A. Voth, A. La Porta, A. M. Crawford, J. Alexander, and E. Bodenschatz, J. Fluid Mech. 469, 121 (2002).

    ADS  MATH  Google Scholar 

  93. J. Bec, L. Biferale, G. Boffetta, A. Celani, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi, J. Fluid Mech. 550, 349 (2006).

    Article  ADS  MATH  Google Scholar 

  94. N. M. Qureshi, M. Bourgoin, C. Baudet, A. Cartellier, and Y. Gagne, Phys. Rev. Lett. 99, 184502 (2007).

    Article  ADS  Google Scholar 

  95. H. Xu, and E. Bodenschatz, Phys D 237, 2095 (2008).

    Article  MATH  Google Scholar 

  96. R. Zimmermann, L. Fiabane, Y. Gasteuil, R. Volk, and J. F. Pinton, New J. Phys. 15, 015018 (2013).

    Article  ADS  Google Scholar 

  97. Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A. Szalay, and G. L. Eyink, J. Turbul. 9, 31 (2008).

    Article  ADS  Google Scholar 

  98. H. Yu, K. Kanov, E. Perelman, J. Graham, E. Frederix, R. Burns, A. Szalay, G. Eyink, and C. Meneveau, J. Turbul. 13, 12 (2012).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HaiTao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Pumir, A. & Bodenschatz, E. Lagrangian view of time irreversibility of fluid turbulence. Sci. China Phys. Mech. Astron. 59, 614702 (2016). https://doi.org/10.1007/s11433-015-5736-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5736-x

Keywords

Navigation