Skip to main content
Log in

A perspective on high-order methods in computational fluid dynamics

  • Invited Review
  • Fluid Dynamics/The 6th Tsien Hsue Shen Memorial Lecture
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

There has been an intensive international effort to develop high-order Computational Fluid Dynamics (CFD) methods into design tools in aerospace engineering during the last one and half decades. These methods offer the potential to significantly improve solution accuracy and efficiency for vortex dominated turbulent flows. Enough progresses have been made in algorithm development, mesh generation and parallel computing that these methods are on the verge of being applied in a production design environment. Since many review papers have been written on the subject, I decide to offer a personal perspective on the state-of-the-art in high-order CFD methods and the challenges that must be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Vassberg, E. N. Tinoco, M. Mani, O. Brodersen, B. Eisfeld, R. Wahls, J. Morrison, T. Zickuhr, K. Laflin, and D. Marriplis, J. Aircraft 51, 1070 (2014).

    Article  Google Scholar 

  2. M. R. Visbal, and D. V. Gaitonde, J. Comp. Phys. 181, 155 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Z. J. Wang, K. J. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni, A. Cary, H. Deconinck, R. Hartmann, K. Hillewaert, H. T. Huynh, N. Kroll, G. May, P.- O. Persson, B. V. Leer, and M. Visbal, Int. J. Numer. Methods Fluids 72, 811 (2013).

    Article  ADS  Google Scholar 

  4. B. Cockburn, and C. W. Shu, Math. Comput. 52, 411 (1989).

    MATH  MathSciNet  Google Scholar 

  5. B. Cockburn, and C. W. Shu, J. Comput. Phys. 141, 199 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. F. Bassi, S. Rebay, J. Comput. Phys. 131, 267 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. H. T. Huynh, “A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods”, AIAA Paper No. 2007–4079, 2007.

    Google Scholar 

  8. H. T. Huynh, Z. J. Wang, and P. E. Vincent, Comput. Fluids 98, 209 (2014).

    Article  MathSciNet  Google Scholar 

  9. Z. J. Wang, and H. Gao, J. Comput. Phys. 228, 8161 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. P. E. Vincent, P. Castonguay, and A. Jameson, J. Sci. Comput. 47, 50 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Haga, H. Gao, and Z. J. Wang, Math. Model. Nat. Phenom. 6, 28 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  12. N. Kroll, “ADIGMA-A European project on the development of adaptive higher-order variational methods for aerospace applications”, AIAA Paper No. 2009-176, 2009.

    Google Scholar 

  13. Z. J. Wang, Phil. Trans. R. Soc. A 372, 20130318 (2014).

    Google Scholar 

  14. J. S. Hesthaven, and T. Warburton, J. Comput. Phys. 181, 186 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Z. J. Wang, Adaptive high-order methods in computational fluid dynamics (World Scientific, Singapore, 2011).

    MATH  Google Scholar 

  16. J. A. Ekaterinaris, Prog. Aerosp. Sci. 41, 192 (2005).

    Article  Google Scholar 

  17. Z. J. Wang, Prog. Aerosp. Sci. 43, 1 (2007).

    Article  Google Scholar 

  18. X. Deng, M. Mao, G. Tu, H. X. Zhang, and Y. F. Zhang, High-order and high accurate CFD methods and their applications for complex grid problems, Comm. Comp. Phys. 11, 1081 (2012).

    MathSciNet  Google Scholar 

  19. M. Dumbser, D. Balsara, E. F. Toro, and C. D. Munz, A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, J. Comput. Phys. 227, 8209 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. H. Luo, L. Luo, R. Nourgaliev, V. A. Mousseau, and N. Dinh, J. Comput. Phys. 229, 6961 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. L. Zhang, W. Liu, L. He, X. G. Deng, H. X. Zhang, and L. P. Zhang, J. Comput. Phys. 231, 1081 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. J. Du, C. W. Shu, and M. Zhang, Appl. Numer. Math. 90, 146 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  23. J. S. Park, and C. Kim, Comput. Fluids 96, 377 (2014).

    Article  MathSciNet  Google Scholar 

  24. G. E. Barter, and D. L. Darmofal, “Shock capturing with higher-order, PDE-based artificial viscosity”, AIAA Paper No. 2007-3823, 2007.

    Google Scholar 

  25. H. Zhang, and F. Zhuang, Adv. Appl. Mech. 29, 193 (1991).

    Article  Google Scholar 

  26. D. Fu, and Y. Ma, J. Comput. Phys. 134, 1 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. X. Deng, and H. Maekawa, J. Comput. Phys. 130, 77 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. X. Deng, and H. Zhang, J. Comput. Phys. 165, 22 (2000).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Y. X. Ren, M. Liu, and H. Zhang, J. Comput. Phys. 192, 365 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. G. J. Gassner, F. Hindenlang, and F. Munz, A Runge-Kutta based discontinuous Galerkin method with time accurate local time stepping, in Adaptive High-order Methods in Computational Fluid Dynamics, edited by Z. J. Wang (World Scientific, Singapore, 2011), p. 95.

    Chapter  Google Scholar 

  31. P. O. Persson, “High-order LES simulations using implicit-explicit Runge-Kutta schemes”, AIAA Paper No. 2011-684, 2011.

    Google Scholar 

  32. Y. Saad, and M. H. Schultz, SIAM J. Sci. Stat. Comp. 7, 856 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  33. K. J. Fidkowski, T. A. Oliver, J. Lu, and D. L. Darmofal, J. Comput. Phys. 207, 92 (2005).

    Article  ADS  MATH  Google Scholar 

  34. C. R. Nastase, and D. J. Mavriplis, J. Comput. Phys. 213, 330 (2006).

    Article  ADS  MATH  Google Scholar 

  35. M. Ceze, and K. J. Fidkowski, “Pseudo-transient continuation, solution update methods, and CFL strategies for DG discretizations of the RANS-SA equations”, AIAA Paper No. 2013-2686, 2013.

    Google Scholar 

  36. C. Geuzaine, and J. F. Remacle, Int. J. Numer. Meth. Eng. 79, 1309 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  37. CGNS System. The standard for numerical analysis data (http://www.cgns.org).

  38. P. O. Persson, and J. Peraire, “Curved mesh generation and mesh refinement using lagrangian solid mechanics”, AIAA Paper No. 2009-949, 2009.

    Google Scholar 

  39. K. J. Fidkowski, and D. L. Darmofal, AIAA J. 49, 673 (2011).

    Article  ADS  Google Scholar 

  40. N. A. Pierce, and M. B. Giles, SIAM Rev. 42, 247 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  41. A. Belme, A. Dervieux, and F. Alauzet, J. Comput. Phys. 231, 6323 (2012).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. D. L. Darmofal, S. R. Allmaras, M. Yano, and J. Kudo, “An adaptive, higher-order discontinuous Galerkin finite element method for aerodynamics”, AIAA Paper No. 2013-2871, 2013.

    Google Scholar 

  43. R. Hartmann, Int. J. Numer. Meth. Fluids 72, 883 (2013).

    Article  Google Scholar 

  44. R. Hartmann, and P. Houston, J. Comput. Phys. 183, 508 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. S. M. Kast, and K. J. Fidkowski, J. Comput. Phys. 252, 468 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  46. D. A. Venditti, and D. L. Darmofal, J. Comput. Phys. 187, 22 (2003).

    Article  ADS  MATH  Google Scholar 

  47. L. Wang, and D. J. Mavriplis, J. Comput. Phys. 228, 7643 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiJian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z. A perspective on high-order methods in computational fluid dynamics. Sci. China Phys. Mech. Astron. 59, 614701 (2016). https://doi.org/10.1007/s11433-015-5706-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5706-3

Keywords

Navigation