Skip to main content
Log in

Demonstration of ultralow-threshold 2 micrometer microlasers on chip

  • Article
  • Special Topic: Microcavity Photonics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

We demonstrate ultralow-threshold thulium-doped, as well as thulium-holmium-codoped, microtoroid lasers on silicon chips, operating at the wavelength of around 2 μm. High quality factor whispering gallery mode (WGM) microtoroid cavities with proper thulium and holmium concentrations are fabricated from the silica sol-gel films. The highly confined WGMs make the microcavity lasers operate with ultralow thresholds, approximately 2.8 μW and 2.7 μW for the thulium-doped and the thulium-holmium-codoped microlasers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vahala K J. Optical microcavities. Nature, 2003; 424: 839–846

    Article  ADS  Google Scholar 

  2. Kippenberg T J, Vahala K J. Cavity opto-mechanics. Opt Express, 2007, 15: 1717217205

    Article  Google Scholar 

  3. He L, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers. Laser Photon Rev, 2013; 7: 60–82

    Article  Google Scholar 

  4. Qian S, Snow J B, Tzeng H M, et al. Lasing droplets: Highlighting the liquid-air interface by laser emission. Science, 1986; 231: 486–488

    Article  ADS  Google Scholar 

  5. Sandoghdar V, Treussart F, Hare J, et al. Very low threshold whispering- gallery-mode microsphere laser. Phys Rev A, 1996, 54: R1777R1780

    Article  Google Scholar 

  6. McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992; 60: 289–291

    Article  ADS  Google Scholar 

  7. Kuwata-Gonokami M, Takeda K. Polymer whispering gallery mode lasers. Opt Mater, 1998; 9: 12–17

    Article  ADS  Google Scholar 

  8. Kippenberg T J, Spillane S M, Vahala K J. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl Phys Lett, 2004; 85: 6113–6115

    Article  ADS  Google Scholar 

  9. Yang L, Carmon T, Min B, et al. Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process. Appl Phys Lett, 2005, 86: 091114

    Article  ADS  Google Scholar 

  10. Ostby E P, Yang L, Vahala K J. Ultralow-threshold Yb3+:SiO2 glass laser fabricated by the solgel process. Opt Lett, 2007; 32: 2650–2652

    Article  ADS  Google Scholar 

  11. Min B, Kippenberg T J, Yang L, et al. Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip. Phys Rev A, 2004, 70: 033803

    Article  ADS  Google Scholar 

  12. Hsu H S, Cai C, Armani A M. Ultra-low-threshold Er:Yb sol-gel microlaser on silicon. Nucl Opt Express, 2009, 17: 2326523271

    ADS  Google Scholar 

  13. Jiang X F, Xiao Y F, Zou C L, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv Mater, 2012, 24: OP260OP264

    Google Scholar 

  14. Pal B. Frontiers in Guided Wave Optics and Optoelectronics. Vukovar: InTech, 2010. 491

    Book  Google Scholar 

  15. Geng J, Jiang S. Fiber lasers: The 2 m market heats up. Opt Photon News, 2014; 25: 34–41

    Article  Google Scholar 

  16. Jackson S D, King T A. Theoretical modeling of Tm-doped silica fiber lasers. J Lightwave Technol, 1999; 17: 948–956

    Article  ADS  Google Scholar 

  17. Meleshkevich M. 415W single-mode CW thulium fiber laser in all-fiber format. In: Meleshkevich M, Platonov N, Gapontsev D, eds. The Proceedings of IEEE Conference on Lasers and Electro-Optics, 2007 and the International Quantum Electronics Conference. Munich, 2007. CP 2-3-THU

    Google Scholar 

  18. Moulton P F, Rines G A, Slobodtchikov E V, et al. Tm-doped fiber lasers: Fundamentals and power scaling. IEEE J Sel Top Quantum Electron, 2009; 15: 85–92

    Article  Google Scholar 

  19. Jackson S D, King T A. CW operation of a 1.064 m pumped Tm-Ho-doped silica fiber laser. IEEE J Quantum Electron, 1998; 34: 1578–1587

    Article  ADS  Google Scholar 

  20. Richards B, Jha A, Tsang Y, et al. Tellurite glass lasers operating close to 2 m. Laser Phys Lett, 2010; 7: 177–193

    Article  Google Scholar 

  21. Fried N M. Thulium fiber laser lithotripsy: An in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 m. Lasers Surg Med, 2005; 37: 53–58

    Article  Google Scholar 

  22. Barnes N P, Filer E D, Morrison C A, et al. Ho:Tm lasers I: Theoretical. IEEE J Quantum Electron, 1996; 32: 92–103

    Article  ADS  Google Scholar 

  23. Cornacchia F, Toncelli A, Tonelli M. 2 μm lasers with fluoride crystals: Research and development. Prog Quantum Electron, 2009; 33: 61–109

    Article  ADS  Google Scholar 

  24. McGuckin B T, Menzies R T. Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 m. IEEE J Quantum Electron, 1992; 28: 1025–1028

    Article  ADS  Google Scholar 

  25. Barnes N P, Rodriguez W J, Walsh B M. Ho:Tm:YLF laser amplifiers. J Opt Soc Am B, 1996; 13: 2872–2882

    Article  ADS  Google Scholar 

  26. Wu J, Jiang S, Peyghambarian N. 1.5-μm-band thulium-doped microsphere laser originating from self-terminating transition. Opt Express, 2005, 13: 1012910133

    Google Scholar 

  27. Pal A, Chen S Y, Sen R, et al. A high-Q low threshold thulium-doped silica microsphere laser in the 2 m wavelength region designed for gas sensing applications. Laser Phys Lett, 2013, 10: 085101

    Article  ADS  Google Scholar 

  28. Mehrabani S, Armani A M. Blue upconversion laser based on thulium- doped silica microcavity. Opt Lett, 2013; 38: 4346–4349

    Article  ADS  Google Scholar 

  29. Yang L, Vahala K J. Gain functionalization of silica microresonators. Opt Lett, 2003; 28: 592–594

    Article  ADS  Google Scholar 

  30. Fan H, Hua S, Jiang X, et al. Demonstration of an erbium-doped microsphere laser on a silicon chip. Laser Phys Lett, 2013, 10: 105809

    Article  ADS  Google Scholar 

  31. Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavity on a chip. Nature, 2003; 421: 925–928

    Article  ADS  Google Scholar 

  32. Knight J C, Cheung G, Jacques F, et al. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt Lett, 1997; 22: 1129–1131

    Article  ADS  Google Scholar 

  33. Cai M, Painter O, Vahala K J. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys Rev Lett, 2000; 85: 74–77

    Article  ADS  Google Scholar 

  34. Digonnet M J F. Rare-Earth-Doped Fiber Lasers and Amplifiers. New York: Marcel Dekker, 2001. 92

    Book  Google Scholar 

  35. Del-Castillo J, Yanes A C, Méndez-Ramos J, et al. Sol-gel preparation and white up-conversion luminescence in rare-earth doped PbF2 nanocrystals dissolved in silica glass. J Sol-Gel Sci Technol, 2010; 53: 509–514

    Article  Google Scholar 

  36. Barnes W L, Townsend J E. Highly tunable and efficient diode pumped operation of Tm3+ doped fibre lasers. Electron Lett, 1990; 26: 746–747

    Article  ADS  Google Scholar 

  37. Carmon T, Yang L, Vahala K J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt Express, 2004; 12: 4742–4750

    Article  ADS  Google Scholar 

  38. Scheps R. Upconversion laser processes. Prog Quantum Electron, 1996; 20: 271–358

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoShun Jiang or Min Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Jiang, X., Ding, Y. et al. Demonstration of ultralow-threshold 2 micrometer microlasers on chip. Sci. China Phys. Mech. Astron. 58, 114204 (2015). https://doi.org/10.1007/s11433-015-5669-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5669-4

Keywords

Navigation