Skip to main content
Log in

Nonlinear dynamical behavior of Xenon atoms along dislocation lines in UO2+x nuclear fuel

  • Article
  • Nuclear Physics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Experimental results showed that there are a few Xenon atom bubbles connected by the dislocation line in the UO2+x nuclear fuel, and the largest radius of bubbles is about 45 nm. This phenomenon is in contrast to traditional bubble formation mechanism. This phenomenon is very important in understanding the properties of nuclear fuel. In this work, we apply a time-dependent microscopic atom transport equation and take into account stress coherent potential in the boundary of the dislocation. Using the equation, we numerically solved the stress coherence effect and studied the transfer properties of Xenon atoms along the dislocation line. Our numerical results show that the transport of the Xenon atoms along the dislocation changes nonlinearly with the external driving energy, and reaches at the saturation values. It explains the growth limit of Xenon atom bubbles that is in agreement with the experiment results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao F L, Wang G S, Zhao W, et al. Predicting the spread of nuclear radiation from the damaged Fukushima nuclear power plant. Chin Sci Bull, 2011, 56: 1890–1896

    Article  Google Scholar 

  2. Zhang T X, Wang J, Wu T, et al. The active commissioning process for a power reactor spent fuel reprocessing pilot plant in China. Chin Sci Bull, 2011, 56: 2411–2415

    Article  Google Scholar 

  3. Stark J P. Correlation factor for diffusion in an edge dislocation in a simple cubic crystal. J Appl Phys, 1985, 57: 1869–1871

    Article  ADS  Google Scholar 

  4. Brotzen F R, Seeger A. Diffusion near dislocations, dislocation arrays and tensile cracks. Acta Metall, 1989, 37: 2985–2992

    Article  Google Scholar 

  5. Zandbergen H W, Pao C W, Srolovitz D J. Dislocation injection, reconstruction, and atomic transport on {001} Au Terraces. Phys Rev Lett, 2007, 98: 036103

    Article  ADS  Google Scholar 

  6. Gao Y, Zhuang Z, You X C. A hierarchical dislocation-grain boundary interaction model based on 3D discrete dislocation dynamics and molecular dynamics. Sci China-Phys Mech Astron, 2011, 54: 625–632

    Article  ADS  Google Scholar 

  7. Gurarie V, Lobkovsky A E. Tracer diffusion in a dislocated lamellar system. Phys Rev Lett, 2002, 88: 178301

    Article  ADS  Google Scholar 

  8. Osetsky Y N, Bacon D J, Serra A, et al. One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper. Philos Mag, 2003, 83: 61–91

    Article  ADS  Google Scholar 

  9. Christopher A S, Chen Y. Geometric considerations for diffusion in polycrystalline solids. J Appl Phys, 2007, 101: 063524

    Article  ADS  Google Scholar 

  10. Long J, Zhang S, Zhao Y L, et al. Deformation study of bicrystalline and nano-polycrystalline structures using phase field crystal method. Sci China-Phys Mech Astron, 2014, 57: 1046–1056

    Article  ADS  Google Scholar 

  11. Yang Z Y, Jiao F F, Lu Z X, et al. Coupling effects of stress and ion irradiation on the mechanical behaviors of copper nanowires. Sci China-Phys Mech Astron, 2013, 56: 498–505

    Article  ADS  Google Scholar 

  12. Cai J, Ji L, Yang S Z, et al. Deformation mechanism and microstructures on polycrystalline aluminum induced by high-current pulsed electron beam. Chin Sci Bull, 2013, 58: 2507–2511

    Article  Google Scholar 

  13. Dudarev S L, Semenov A A, Woo C H. Segregation of voids in a spatially heterogeneous dislocation microstructure, Phy Rev B, 2004, 70: 094115

    Article  ADS  Google Scholar 

  14. Alpass C R, Murphy J D, Falster R J, et al. Nitrogen diffusion and interaction with dislocations in single-crystal silicon. J Appl Phys, 2009, 105: 013519

    Article  ADS  Google Scholar 

  15. Basak C B, Sengupta A K, Kamath H S. Classical molecular dynamics simulation of UO to predict thermophysical properties. J Alloys Compounds, 2003, 360: 210–216

    Article  Google Scholar 

  16. Desai T G, Millett P C, Wolf D. Molecular dynamics study of diffusional creep in nanocrystalline UO2. Acta Mater, 2008, 56: 4489–4497

    Article  Google Scholar 

  17. Taketomi S, Matsumoto R, Miyazaki N. Atomistic study of hydrogen distribution and diffusion around a {112}〈111〉 edge dislocation in alpha iron. Acta Mater, 2008, 56: 3761–3769

    Article  Google Scholar 

  18. Hartmann M, Trinkaus H. Evolution of gas-filled nanocracks in crystalline solids. Phys Rev Lett, 2002, 88: 055505

    Article  ADS  Google Scholar 

  19. Chen J, Jung P, Trinkaus H. Evolution of helium platelets and associated dislocation loops in a-SiC. Phys Rev Lett, 1999, 82: 2709–2712

    Article  ADS  Google Scholar 

  20. Kalashnikov E, Tolstikhin I, Lehmann B, et al. Helium transport along lattice channels in crystalline quartz. J Phys Chem Solids, 2003, 64: 2293–2300

    Article  ADS  Google Scholar 

  21. Mansouri M A, Olander D R. Fission product release from trace irradiated UO2+x . J Nucl Mater, 1998, 254: 22–23

    Article  ADS  Google Scholar 

  22. Veshchunov M S, Shestak V E. An advanced model for intragranular bubble diffusivity in irradiated UO2 fuel. J Nucl Mater, 2005, 346: 208–219

    Article  ADS  Google Scholar 

  23. Olander D R, Uffelen P V. Re-solution of fission gas — A review: Part I. Intragranular bubbles. J Nucl Mater, 2006, 354: 94–109

    Article  ADS  Google Scholar 

  24. Veshchunov M S. A new model of grain growth kinetics in UO2 fuel pellets. Part 1: Grain growth kinetics controlled by grain face bubble migration. J Nucl Mater, 2005, 346: 208–219

    Article  ADS  Google Scholar 

  25. Govers K, Lemehov S, Verwerft M. In-pile Xe diffusion coefficient in UO2 determined from the modeling of intragranular bubble growth and destruction under irradiation. J Nucl Mater, 2008, 374: 461–472

    Article  ADS  Google Scholar 

  26. Ono H, Mototani A, Abe N, et al. Proposal for a fuel integrity evaluation system under a BWR post-BT condition. In: Proceeding of Top Fuel, 2006 International Meeting on LWR Fuel Performance, Salamanca, Spain, 22–26 October, 2006. 132

    Google Scholar 

  27. Dai Z H, Ni J. Mesoscopic terahertz photoelectric switch. Appl Phys Lett, 2006, 88: 192107

    Article  ADS  Google Scholar 

  28. Frensley W R. Boundary conditions for open quantum systems driven far from equilibrium. Rev Mod Phys, 1990, 62: 745–791

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenHong Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, P., Dai, Z. Nonlinear dynamical behavior of Xenon atoms along dislocation lines in UO2+x nuclear fuel. Sci. China Phys. Mech. Astron. 58, 1–6 (2015). https://doi.org/10.1007/s11433-014-5631-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5631-x

Keywords

Navigation