Skip to main content
Log in

Sound speed profile inversion using a horizontal line array in shallow water

  • Article
  • Acoustics
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

It is better to use a simple configuration to enhance the applicability of ocean environment inversion in shallow water. A matched-field inversion method based on a horizontal line array (HLA) is used to retrieve the variation of sound speed profile. The performance of the inversion method is verified in the South China Sea in June, 2010. An HLA laid at bottom was used to receive signals from a bottom-mounted transducer. Inverted mean sound speed profiles from 9-hour long acoustic signals are in good agreement with measurements from two temperature chains at the sites of the source and receiver. The results show that an HLA can be used to monitor the variability of shallow-water sound speed profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Munk W H, Wunsch C. Ocean acoustic tomography: A scheme for large scale monitoring. Deep Sea Res, 1979, 26(A): 123–161

    Article  ADS  Google Scholar 

  2. Munk W H, Spindel R C, Baggeroer A B, et al. The heard island feasibility test. J Acoust Soc Am, 1994, 96: 2330–2342

    Article  ADS  Google Scholar 

  3. Worcester P F, Spindel R C. North pacific acoustic laboratory. J Acoust Soc Am, 2005, 117: 1499–1510

    Article  ADS  Google Scholar 

  4. Worcester P F, Munk W H, Spindel R C. Acoustic remote sensing of ocean gyres. Acoust Tod, 2005, 1(1): 11–17

    Article  Google Scholar 

  5. Munk W H, Wunsch C. Ocean acoustic tomography: Rays and modes. Rev Geophys Space Phys, 1983, 21: 777–793

    Article  ADS  Google Scholar 

  6. Shang E C. Ocean acoustic tomography based on adiabatic mode theory. J Acoust Soc Am, 1989, 85: 1531–1537

    Article  ADS  Google Scholar 

  7. Baggeroer A B, Kuperman W A, Mikhalevsky P N. An overview of matched field methods in ocean acoustics. IEEE J Ocean Eng, 1993, 18: 401–424

    Article  Google Scholar 

  8. Tolstoy A, Diachok O, Frazer N L. Acoustic tomography via matched field processing. J Acoust Soc Am, 1991, 89(3): 1119–1127

    Article  ADS  Google Scholar 

  9. Gerstoft P, Gingras D. Parameter estimation using multi-frequency range dependent acoustic data in shallow water. J Acoust Soc Am, 1996, 99(5): 2839–2850

    Article  ADS  Google Scholar 

  10. Snellen M, Simons D G, Siderius M, et al. An evaluation of the accuracy of shallow water matched field inversion results. J Acoust Soc Am, 2001, 109: 514–527

    Article  ADS  Google Scholar 

  11. Tolstoy A, Diachok O, Frazer L N. Acoustic tomography via matched field processing. J Acoust Soc Am, 1991, 89(3): 1119–1127

    Article  ADS  Google Scholar 

  12. Siderius M, Hermand J P. Yellow shark spring 1995: Inversion results from sparse broadband acoustic measurements over a highly range-dependent soft clay layer. J Acoust Soc Am, 1999, 106(2): 637–651

    Article  ADS  Google Scholar 

  13. Felisberto P, Jesus S M, Stephan Y, et al. Shallow water tomography with a sparse array during the intimate’98 sea trial. In: MTS/ IEEE, editor, Proceedings MTS/IEEE Oceans’2003, San Diego, USA, 2003. 571–575

    Google Scholar 

  14. Soares C, Jesus S M, Coelho E. Acoustic oceanographic buoy testing during the maritime rapid environmental assessment 2003 sea trial. Simons D, ed. In: Proc. of European Conference on Underwater Acoustics 2004, Delft, Netherlands, 2004. 271–279

    Google Scholar 

  15. Soares C, Jesus S M. Matched-field tomography using an acoustic oceanographic buoy. In: Jesus S M, ed, Proceedings of European Conference on Underwater Acoustics 2006, Carvoeiro, Portugal, 2006. 717–722

    Google Scholar 

  16. Yu Y X, Li Z L, He L. Matched-field inversion of sound speed profile in shallow water using a parallel genetic algorithm. Chin J Oceanol Limnol, 2010, 28(5): 1080–1085

    Article  Google Scholar 

  17. He L, Li Z L, Zhang R H, el al. Inversion for sound speed profiles in the northern of South China Sea (in Chinese). Sci Sin-Phys Mech Astron, 2011, 41(1): 49–57

    Article  Google Scholar 

  18. Li F H, Zhang R H. Inversion for sound speed profile by using a bottom mounted horizontal line array in shallow water. Chin Phys Lett, 2010, 27(8): 084303-1–4

    ADS  Google Scholar 

  19. Li Z L, Zhang R H, Badiey M, et al. Arrival time fluctuation of normal modes caused by solitary internal waves (in Chinese). Sci Sin-Phys Mech Astron, 2013, 43(1): s62–s67

    Article  Google Scholar 

  20. Westwood E K. Broadband matched-field source localization. J Acoust Soc Am, 1992, 91: 2777–2798

    Article  ADS  Google Scholar 

  21. Jensen F B, Kuperman W A, Porter M B, et al. Computational Ocean Acoustics. 2nd ed. New York: Springer, 2011

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengLin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., He, L., Zhang, R. et al. Sound speed profile inversion using a horizontal line array in shallow water. Sci. China Phys. Mech. Astron. 58, 1–7 (2015). https://doi.org/10.1007/s11433-014-5526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5526-x

Keywords

Navigation