Skip to main content
Log in

Constraining fast radio burst progenitors with gravitational lensing

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Fast Radio Bursts (FRBs) are new transient radio sources discovered recently. Because of the angular resolution restriction in radio surveys, no optical counter part has been identified yet so it is hard to determine the progenitor of FRBs. In this paper we propose to use radio lensing survey to constrain FRB progenitors. We show that, different types of progenitors lead to different probabilities for a FRB to be gravitationally lensed by dark matter halos in foreground galaxies, since different type progenitors result in different redshift distributions of FRBs. For example, the redshift distribution of FRBs arising from double stars shifts toward lower redshift than of the FRBs arising from single stars, because double stars and single stars have different evolution timescales. With detailed calculations, we predict that the FRB sample size for producing one lensing event varies significantly for different FRB progenitor models. We argue that this fact can be used to distinguish different FRB models and also discuss the practical possibility of using lensing observation in radio surveys to constrain FRB progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thornton D, Stappers B, Bailes M, et al. A population of fast radio bursts at cosmological distances. Science, 2013, 341, 53–56

    Article  ADS  Google Scholar 

  2. Navarro J F, Frenk C S, White S D M. A universal density profile from hierarchical clustering. Astrophys J, 1997, 490: 493–508

    Article  ADS  Google Scholar 

  3. Li L X, Ostriker J P. Semianalytical models for lensing by dark halos. I. Splitting angles. Astrophys J, 2002, 566: 652–666

    Article  ADS  Google Scholar 

  4. Li L X, Ostriker J P. Gravitational lensing by a compound population of halos: Standard models. Astrophys J, 2003, 595: 603–613

    Article  ADS  Google Scholar 

  5. Press W H, Schechter P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys J, 1974, 187: 425–438

    Article  ADS  Google Scholar 

  6. Eisenstein D J, Hu W. Power spectra for cold dark matter and its variants. Astrophys J, 1999, 511: 5–15

    Article  ADS  Google Scholar 

  7. Hinshaw G, Larson D, Komatsu E, et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological parameter results. Astrophys J Suppl Ser, 2013, 208: 19

    Article  ADS  Google Scholar 

  8. Schneider P, Ehlers J, Falco E E. Gravitational Lenses. Berlin: Springer-Verlag, 1992

    Google Scholar 

  9. Falcke H, Rezzolla L. Fast radio bursts: The last sign of supramassive neutron stars. Astron Astrophys, 2014, 562: A137

    Article  ADS  Google Scholar 

  10. Popov S B, Postnov K. Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts. arXiv:0710.2006

  11. Popov S B, Postnov K. Millisecond extragalactic radio bursts as magnetar flares. arXiv:1307.4924

  12. Totani T. Cosmological fast radio bursts from binary neutron star mergers. Pub Astron Soc Jpn, 2013, 65: L12

    ADS  Google Scholar 

  13. Kashiyama K, Ioka K, Mészáros P. Cosmological fast radio bursts from binary white dwarf mergers. Astrophys J, 2013, 776: L39

    Article  ADS  Google Scholar 

  14. Loeb A, Shvartzvald Y, Maoz D. Fast radio bursts may originate from nearby flaring stars. Mon Not R Astron Soc, 2014, 439: L16–L50

    Article  ADS  Google Scholar 

  15. Zhang B. A possible connection between fast radio bursts and Gamma-ray bursts. Astrophys J, 2014, 780: L21

    Article  ADS  Google Scholar 

  16. Deng W, Zhang B. Cosmological implications of fast radio burst/Gamma-ray burst associations. Astrophys J, 2014, 783: L35

    Article  ADS  Google Scholar 

  17. Virgili F, Zhang B, O’Brien P, et al. Are all short-hard Gamma-ray bursts produced from mergers of compact stellar objects? Astrophys J, 2011, 727: 109

    Article  ADS  Google Scholar 

  18. Cole S, Norberg P, Baugh C M, et al. The 2dF galaxy redshift survey: Near-infrared galaxy luminosity functions. Mon Not R Astron Soc, 2001, 326: 255–273

    Article  ADS  Google Scholar 

  19. Li L X. Star formation history up to z=7.4: Implications for gamma-ray bursts and cosmic metallicity evolution. Mon Not R Astron Soc, 2008, 388: 1487–1500

    Article  ADS  Google Scholar 

  20. Tan W W, Cao X F, Yu Y W. Determining the luminosity function of swift long Gamma-ray bursts with pseudo-redshifts. Astrophys J, 2013, 772: L8

    Article  ADS  Google Scholar 

  21. Guseinov O H, Yazgan E, Tagieva S O, et al. The pulsar luminosity function. Astron Astrophys, 2003, 39: 267–274

    Google Scholar 

  22. Turner E L, Ostriker J P, Gott J R. The statistics of gravitational lenses—The distributions of image angular separations and lens redshifts. Astrophys J, 1984, 284: 1–22

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunYu Li.

Additional information

Contributed by LI LiXin (Associate Editor)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, L. Constraining fast radio burst progenitors with gravitational lensing. Sci. China Phys. Mech. Astron. 57, 1390–1394 (2014). https://doi.org/10.1007/s11433-014-5465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5465-6

Keywords

Navigation