Skip to main content
Log in

Comparing the VGCG model as the unification of dark sectors with observations

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Current observations indicate that 95% of the energy density in the universe is the unknown dark component. The dark component is considered composed of two fluids: dark matter and dark energy. Or it is a mixture of these two dark components, i.e., one can consider it an exotic unknown dark fluid. With this consideration, the variable generalized Chaplygin gas (VGCG) model is studied with not dividing the unknown fluid into dark matter and dark energy parts in this paper. By using the Markov Chain Monte Carlo method, the VGCG model as the unification of dark sectors is constrained, and the constraint results on the VGCG model parameters are, n = 0.00057 +0.0001+0.0009−0.0006−0.0006 , α = 0.0015 +0.0003+0.0017−0.0015−0.0015 and B s = 0.778 +0.016+0.030−0.016−0.035 , obtained by the cosmic microwave background data from the 7-year WMAP full data points, the baryon acoustic oscillation data from Sloan Digital Sky Survey (SDSS) and 2-degree Field Galaxy Redshift (2dFGRS) survey, and the Union2 type Ia supernova data with systematic errors. At last, according to the evolution of deceleration parameter it is shown that an expanded universe from deceleration to acceleration can be obtained in VGCG cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess A G, Filippenko A V, Challis P, et al. Observational evidence from supernova for an accelerating universe and a cosmological constant. Astrophys J, 1998, 116: 1009–1038

    Google Scholar 

  2. Spergel D N, Verde L, Peiris H V, et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of cosmological parameters. Astrophys J Suppl, 2003, 148: 175–194

    Article  ADS  Google Scholar 

  3. Pope A C, Matsubara T, Szalay A S, et al. Cosmological parameters from eigenmode analysis of sloan digital sky survey galaxy redshifts. Astrophys J, 2004, 607: 655–660

    Article  ADS  Google Scholar 

  4. Feng C, Wang B, Abdalla E, et al. Observational constraints on the dark energy and dark matter mutual coupling. Phys Lett B, 2008, 665: 111–119

    Article  ADS  Google Scholar 

  5. He J H, Wang B, Abdalla E. Stability of the curvature perturbation in dark sectors’ mutual interacting models. Phys Lett B, 2009, 671: 139–145

    Article  ADS  Google Scholar 

  6. Wang B, Zang J, Lin C Y, et al. Interacting dark energy and dark matter: Observational constraints from cosmological parameters. Nucl Phys B, 2007, 778: 69–84

    Article  ADS  Google Scholar 

  7. Wang B, Gong Y G, Abdalla E. Transition of the dark energy equation of state in an interacting holographic dark energy model. Phys Lett B, 2005, 624: 141–146

    Article  ADS  Google Scholar 

  8. Cui J, Zhang X. Cosmic age problem revisited in the holographic dark energy model. Phys Lett B, 2010, 690: 233–238

    Article  ADS  MathSciNet  Google Scholar 

  9. Lu J B, Wu Y B, Jin Y Y, et al. Investigate the interaction between dark matter and dark energy. Res Phys, 2012, 2: 14–21

    Google Scholar 

  10. Lu J B, Ma L N, Liu M L, et al. Time variable cosmological constant of holographic origin with interaction in Brans-Dicke theory. Int JMod Phys D, 2012, 21 1250005

  11. Kamenshchik A Y, Moschella U, Pasquier V. An alternative to quintessence. Phys Lett B, 2001, 511: 265–268

    Article  ADS  MATH  Google Scholar 

  12. Guo Z K, Zhang Y Z. Cosmology with a variable Chaplygin gas. Phys Lett B, 2007, 645: 326–329

    Article  ADS  Google Scholar 

  13. Bento M C, Bertolami O, Sen A A. Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification. Phys Rev D, 2002, 66: 043507

    Article  ADS  Google Scholar 

  14. Lu J B, Xu L X, Li J C, et al. Constraints on modified Chaplygin gas from recent observations and a comparison of its status with other models. Phys Lett B, 2008, 662: 87–91

    Article  ADS  Google Scholar 

  15. Lu J B, Xu L X, Wu Y B, et al. Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov chain Monte Carlo approach. Gen Rel Grav, 2011, 43: 819–832

    Article  ADS  MATH  Google Scholar 

  16. Lu J B, Xu L X. Constraints on variable Chaplygin gas model from Type Ia supernovae and baryon acoustic oscillations. Mod Phys Lett A, 2010, 25: 737–747

    Article  ADS  MATH  Google Scholar 

  17. Wu P X, Yu H W. Generalized Chaplygin gas model: Constraints from Hubble parameter versus redshift data. Phys Lett B, 2007, 644: 16–19

    Article  ADS  MathSciNet  Google Scholar 

  18. Lu J B, Gui Y X, Xu L X. Observational constraint on generalized Chaplygin gas model. Eur Phys J C, 2009, 63: 349–354

    Article  ADS  Google Scholar 

  19. Komatsu E, Smith K M, Dunkley J, et al. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological interpretation. Astrophys J Suppl, 2011, 192: 18

    Article  ADS  Google Scholar 

  20. Percival W J, Reid B A, Eisenstein D J, et al. Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Mon Not Roy Astron Soc, 2010, 401: 2148–2168

    Article  ADS  Google Scholar 

  21. Amanullah R, Lidman C, Rubin D, et al. Spectra and light curves of six type Ia supernovae and the Union2 compilation. Astrophys J, 2010, 716: 712–738

    Article  ADS  Google Scholar 

  22. Ma C P, Bertschinger E. Cosmological perturbation theory in the synchronous and conformal Newtonian gauges. Astrophys J, 1995, 455: 7–25

    Article  ADS  Google Scholar 

  23. Hwang J, Noh H. Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories. Phys Rev D, 2001, 65: 023512

    Article  ADS  Google Scholar 

  24. Lewis A, Bridle S. Cosmological parameters from CMB and other data: A Monte-Carlo approach. Phys Rev D, 2002, 66: 103511

    Article  ADS  Google Scholar 

  25. http://camb.info/

  26. Burles S, Nollett K M, Turner M S. Primordial nucleosynthesis with a varying fine structure constant: An improved estimate. Astrophys J, 2001, 552: L1

    Article  ADS  Google Scholar 

  27. Riess A G, Macri L, Casertano S, et al. A redetermination of the Hubble constant with the Hubble space telescope from a differential distance ladder. Astrophys J, 2009, 699: 539–563

    Article  ADS  Google Scholar 

  28. Xu L X, Wang Y T, Noh H. Unified dark fluid with constant adiabatic sound speed and cosmic constraints. Phys Rev D, 2012, 85: 043003

    Article  ADS  Google Scholar 

  29. Xu L X, Lu J B, Wang Y T. Revisiting generalized Chaplygin gas as a unified dark matter and dark energy model. Eur Phys J C, 2012, 72: 1883

    Article  ADS  Google Scholar 

  30. Xu L X, Wang Y T. Observational constraints to Ricci dark energy model by using: SN, BAO, OHD, fgas data sets J Cosmol Astropart Phys, 2010, 06: 002

    Article  ADS  Google Scholar 

  31. Xu L X, Wang Y T. Cosmic constraint to DGP brane model: Geometrical and dynamical perspectives. Phys Rev D, 2010, 82: 043503

    Article  ADS  Google Scholar 

  32. Lu J B, Wang W P, Xu L X, et al. Does accelerating universe indicates Brans-Dicke theory. Eur Phys J Plus, 2011, 126: 92

    Article  Google Scholar 

  33. Lu J B, Wu Y B, Xu L X. Constraint on the kinematical and dynamical model from the latest obervational data. Mod Phys Lett A, 2010, 25: 3033

    Article  ADS  MATH  Google Scholar 

  34. Lu J B, Saridakis E, Setare M R, et al. Observational constraints on holographic dark energy with varying gravitational constant. J Cosmol Astropart Phys, 2010, 03: 031

    Article  ADS  Google Scholar 

  35. Lu J B, Wang Y T, Wu Y B, et al. Cosmological constraints on the generalized holographic dark energy. Eur Phys J C, 2011, 71: 1800

    Article  ADS  Google Scholar 

  36. Lu J B, Xu L X, Liu M L. Constraints on kinematic models from the latest observational data. Phys Lett B, 2011, 699: 246–250

    Article  ADS  Google Scholar 

  37. Eisenstein D J, Hu W. Baryonic features in the matter transfer function. Astrophys J, 1998, 496: 605–614

    Article  ADS  Google Scholar 

  38. Zhang X, Wu F Q, Zhang J F. New generalized Chaplygin gas as a scheme for unification of dark energy and dark matter. J Cosmol Astropart Phys, 2006, 0601: 003

    Article  ADS  Google Scholar 

  39. Cao S, Liang N, Zhu Z H. Interaction between dark energy and dark matter: Observational constraints from H(z), BAO, CMB and SNe Ia. arXiv: 1105.6274

  40. Cao S, Liang N, Zhu Z H. Testing the phenomenological interacting dark energy with observational H(z) data. arXiv: 1012.4879

  41. Guo Z K, Ohta N, Tsujikawa S. Probing the coupling between dark components of the universe. Phys Rev D, 2007, 76: 023508

    Article  ADS  Google Scholar 

  42. Pan Y, Cao S, Gong Y G, et al. Testing the interaction model with cosmological data and gamma-ray bursts. arXiv: 1211.0184

  43. Liao K, Pan Y, Zhu Z H. Observational constraints on new generalized Chaplygin gas model. arXiv: 1210.5021

  44. Cao S, Zhu Z H, Liang N. Observational constraints on interacting dark matter model without dark energy. Astron Astrophys, 2011, 529: A61

    Article  ADS  Google Scholar 

  45. Guo Z K, Zhang Y Z. Interacting phantom energy. Phys Rev D, 2005, 71: 023501

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianBo Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Chen, L., Xu, L. et al. Comparing the VGCG model as the unification of dark sectors with observations. Sci. China Phys. Mech. Astron. 57, 796–800 (2014). https://doi.org/10.1007/s11433-013-5300-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5300-5

Keywords

Navigation