Skip to main content
Log in

Construction of homogeneous loading functions for elastoplastic damage models for concrete

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Over the past 2 decades, tight restriction has been imposed on strength criteria of concrete by the combination of plasticity and damage in one theory. The present study aims at constructing plastic/damage loading functions for elastoplastic damage models for concrete that can perform more satisfactorily in 3D stress states. Numerous strength criteria of concrete are reorganized according to their simplest representations as Cartesian, cylindrical, mixed cylindrical-Cartesian, and other forms, and the homogeneity of loading functions discussed. It is found that under certain supplementary conditions from physical meanings, an unambiguous definition of the cohesion in a strength criterion, which is demanded in an elastoplastic damage model, is usually available in an explicit or implicit form, and in each case the loading function is still homogeneous. To apply and validate the presented theory, we construct the respective homogeneous damage and plastic loading functions and implant them into some widely used elastoplastic damage models for concrete, and their performances in triaxial compression prove to have improved significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faria R, Oliver J, Cervera M. A strain-based plastic viscous-damage model for massive concrete structures. Int J Solids Struct, 1998, 35: 1533–1558

    Article  MATH  Google Scholar 

  2. Wu J Y, Li J, Faria R. An energy release rate-based plastic-damage model for concrete. Int J Solids Struct, 2006, 43: 583–612

    Article  MATH  Google Scholar 

  3. Carol I, Rizzi E, Willam K. On the formulation of anisotropic elastic degradation. I. Theory based on a pseudo-logarithmic damage tensor rate. Int J Solids Struct, 2001, 38: 491–518

    MATH  Google Scholar 

  4. Carol I, Rizzi E, Willam K. On the formulation of anisotropic elastic degradation. II. Generalized pseudo-Rankine model for tensile damage. Int J Solids Struct, 2001, 38: 519–546

    Article  Google Scholar 

  5. Hansen E, Willam K, Carol I. Two-surface anisotropic damage/ plasticity model for plain concrete. In: de Borst R, ed. Proceedings of Framcos-4 Conference. Rotterdam: Balkema, 2001. 549–556

    Google Scholar 

  6. Abu Al-Rub R K, Kim S M. Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture. Eng Fract Mech, 2010, 77: 1577–1603

    Article  Google Scholar 

  7. Voyiadjis G Z, Taqieddin Z N, Kattan P I. Anisotropic damage-plasticity model for concrete. Int J Plast, 2008, 24: 1946–1965

    Article  MATH  Google Scholar 

  8. Cicekli U, Voyiadjis G Z, Abu Al-Rub R K. A plasticity and anisotropic damage model for plain concrete. Int J Plast, 2007, 23: 1874–1900

    Article  MATH  Google Scholar 

  9. Shao C J, Li J Z, Wu Y H. Pseudo-potential of elastoplastic damage constitutive model and its application. Int J Solids Struct, 2009, 46: 3894–3901

    Article  MATH  Google Scholar 

  10. Zhu Q Z, Shao J F, Kondo D. A micromechanics-based thermodynamic formulation of isotropic damage with unilateral and friction effects. Eur J Mech A-Solids, 2011, 30: 316–325

    Article  MATH  MathSciNet  Google Scholar 

  11. Kim S M, Abu Al-Rub R K. Meso-scale computational modeling of the plastic-damage response of cementitious composites. Cem Concr Res, 2011, 41: 339–358

    Article  Google Scholar 

  12. Li J, Ren X D. Stochastic damage model for concrete based on energy equivalent strain. Int J Solids Struct, 2009, 46: 2407–2419

    Article  MATH  Google Scholar 

  13. Li J, Ren X D. Homogenization-based multi-scale damage theory. Sci China-Phys Mech Astron, 2010, 53: 690–698

    Article  ADS  Google Scholar 

  14. Li J, Ren X D. Multi-scale based stochastic damage evolution. Eng Fail Anal, 2011, 18: 726–734

    Article  Google Scholar 

  15. Resende L. A damage mechanics constitutive theory for the inelastic behavior of concrete. Comput Meth Appl Mech Eng, 1987, 60: 57–93

    Article  MATH  Google Scholar 

  16. Zheng F G, Wu Z R, Gu C S, et al. A plastic damage model for concrete structure cracks with two damage variables. Sci China-Technol Sci, 2012, 55: 2971–2980

    Article  ADS  Google Scholar 

  17. Simo J C, Ju J W. Strain- and stress-based continuum damage models—I. Formulation. Int J Solids Struct, 1987, 23: 821–840

    Article  MATH  Google Scholar 

  18. Hatzigeorgiou G D, Beskos D E, Theodorakopoulos D D, et al. A simple concrete damage model for dynamic FEM applications. Int J Comput Eng Sci, 2001, 2: 267–286

    Article  Google Scholar 

  19. Valliappan S, Yazdchi M, Khalili N. Seismic analysis of arch dam-a continuum damage mechanics approach. Int J Numer Methods Eng, 1999, 45: 1695–1724

    Article  MATH  Google Scholar 

  20. Lee J, Fenves G L. Plastic-damage model for cyclic loading of concrete structures. J Eng Mech-ASCE, 1998, 124: 892–900

    Article  Google Scholar 

  21. Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete. Int J Solids Struct, 1989, 25: 299–326

    Article  Google Scholar 

  22. Shahbeyk S, Hosseini M, Yaghoobi M. Mesoscale finite element prediction of concrete failure. Comput Mater Sci, 2011, 50: 1973–1990

    Article  Google Scholar 

  23. Yu T, Teng J G, Wong Y L, et al. Finite element modeling of confined concrete—II: Plastic-damage model. Eng Struct, 2010, 32: 680–691

    Article  Google Scholar 

  24. Simulia. Abaqus Theory Manual Version 6.12. Providence: Simulia, 2012

    Google Scholar 

  25. Chen W F. Constitutive Equations for Engineering Materials. 2nd ed. New York: Elsevier, 1994

    Google Scholar 

  26. Grassl P, Jirasek M. Damage-plastic model for concrete failure. Int J Solids Struct, 2006, 43: 7166–7196

    Article  MATH  Google Scholar 

  27. Zhang J, Zhang Z X, Chen C Y. Yield criterion in plastic-damage models for concrete. Acta Mech Solid Sin, 2010, 23: 220–230

    Article  Google Scholar 

  28. Zhang J, Li J. Investigation into Lubliner yield criterion of concrete for 3D simulation. Eng Struct, 2012, 44: 122–127

    Article  Google Scholar 

  29. Yu M H. Concrete Strength Theory and Application (in Chinese). Beijing: Higher Education Press, 2002

    Google Scholar 

  30. Hoek E, Carranza-Torres C T, Corkum B. Hoek-Brown failure criterion—2002 edition. In: Proceedings of the 5th North American Rock Mechanics Symposium, vol. 1. Toronto: University of Toronto Press, 2002. 267–273

    Google Scholar 

  31. François M. A new yield criterion for the concrete materials. C R Méc, 2008, 336: 417–421

    Article  MATH  Google Scholar 

  32. Christensen R M, Freeman D C, DeTeresa S J. Failure criteria for isotropic materials, applications to low-density types. Int J Solids Struct, 2002, 39: 973–982

    Article  MATH  Google Scholar 

  33. Bigoni D, Piccolroaz A. Yield criteria for quasibrittle and frictional materials. Int J Solids Struct, 2004, 41: 2855–2878

    Article  MATH  MathSciNet  Google Scholar 

  34. Chorin A, Huehes T J R, McCracken M F, et al. Product formulas and numerical algorithms. Commun Pure Appl Math, 1978, 31: 205–256

    Article  MATH  Google Scholar 

  35. Ju J W. On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. Int J Solids Struct, 1989, 25: 803–833

    Article  MATH  Google Scholar 

  36. Simo J C, Hughes T J R. Computational Inelasticity. New York: Springer-Verlag, 1998

    MATH  Google Scholar 

  37. Green S J, Swanson S R. Static Constitutive Relations for Concrete. AFWL-TR-72-244. US Air Force Weapons Laboratory, Kirtland Air Force Base, NM. 1973

    Google Scholar 

  38. Press W H, Flannery B P, Teukolsky S A, et al. Numerical Recipes in FORTRAN: The Art of Scientific Computing. 2nd ed. Cambridge: Cambridge University Press, 1992

    Google Scholar 

  39. Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete. J Struct Eng-ASCE, 1988, 114: 1804–1826

    Article  Google Scholar 

  40. Zhang J, Ren X D, Li J. Combined positive-negative and hydrostatic-deviatoric splits of stress for construction of 3D damage models. In: Yang Y B, Leu L J, Chen C D, eds. Proceedings of the 3rd International Symposium on Computational Mechanics. Taipei: National Taiwan University Press, 2011. 426–427

    Google Scholar 

  41. Zhang J, Li J. Three-parameter damage model for quasi-brittle solids. In: Proceedings of the 8th European Solid Mechanics Conference. Graz: Euromech, 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Li, J. Construction of homogeneous loading functions for elastoplastic damage models for concrete. Sci. China Phys. Mech. Astron. 57, 490–500 (2014). https://doi.org/10.1007/s11433-013-5188-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5188-0

Keywords

Navigation