Skip to main content
Log in

Continuum description for the characteristic resistance sensed by a cylinder colliding against granular medium

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper, we experimentally and theoretically study the resistance force that develops when a cylinder with a flat face colliding against dry quartzite sand. Observations from experimental data clearly show that the acceleration curves are characterized by a double-peak structure. The first agitated peak can be attributed to a shock process where sand responds elastically, and the valley bottom in the double-peak structure is related to a limited plastic load when a fully plastic region is formed in the sand, while the second agitated peak corresponds to a the occurrence of the maximum of viscous force in a homogeneous developed bulk flow. We use slip line theory (SL) developed in plastic mechanics to capture the value at the valley bottom, adopt the double shearing theory (DS), together with a Local Rheological Constitutive Law (LRCL) suggested in this paper, to capture the drag force generated in a homogeneous bulk flow. Good agreements in the comparisons between numerical and experimental results support the characteristic resistance by the cylinder to predict granular states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seguin A, Bertho Y, Gondret P, et al. Dense granular flow around a penetrating object: Experiment and hydrodynamic model. Phys Rev Lett, 2011, 107: 48001

    Article  ADS  Google Scholar 

  2. Albert I, Sample J G, Morss A J, et al. Granular drag on a discrete object: Shape effects on jamming. Phys Rev E, 2001, 64: 061303

    Article  ADS  Google Scholar 

  3. Zheng X J, Wang Z T, Qiu Z G. Impact craters in loose granular media. Eur Phys J E, 2004, 13, 321–324

    Article  Google Scholar 

  4. Goldman D I, Umbanhowar P. Scaling and dynamics of sphere and disk impact into granular media. Phys Rev E, 2008, 77: 021308

    Article  MathSciNet  ADS  Google Scholar 

  5. de Bruyn J R, Walsh A M. Penetration of spheres into loose granular media. Can J Phys, 2004, 82(6): 439–446

    Article  ADS  Google Scholar 

  6. Hou M, Peng Z, Liu R, et al. Dynamics of a projectile penetrating in granular systems. Phys Rev E, 2005, 72(6): 062301

    Article  ADS  Google Scholar 

  7. Wang D, Ye X, Zheng X. The scaling and dynamics of a projectile obliquely impacting a granular medium. Eur Phys J E, 2012, 35(1): 1–12

    Article  MATH  Google Scholar 

  8. Katsuragi H, Durian D J. Unified force law for granular impact cratering. Nat Phys, 2007, 3: 420–423

    Article  Google Scholar 

  9. Seguin A, Bertho Y, Gondret P. Penetration of a projectile by impact into a granular medium. In: Appert-Rolland C, Chevoir F, Gondret P, et al. eds. Traffic and Granular Flow07. Berlin: Springer, 2009. 647–652

    Chapter  Google Scholar 

  10. Umbanhowar P, Goldman D I. Granular impact and the critical packing state. Phys Rev E, 2010, 82: 010301

    Article  ADS  Google Scholar 

  11. Ciamarra M P, Lara A H, Lee A T, et al. Dynamics of drag and force distributions for projectile impact in a granular medium. Phys Rev Lett, 2004, 92(19): 194301

    Article  ADS  Google Scholar 

  12. Caballero-Robledo G A, Clément E. Rheology of a sonofluidized granular packing. Eur Phys J E, 2009, 30: 395–401

    Article  Google Scholar 

  13. Harich R, Darnige T, Kolb E, et al. Intruder mobility in a vibrated granular packing. EPL, 2011, 96: 54003

    Article  ADS  Google Scholar 

  14. Hill R. The Mathematical Theory of Plasticity. Oxford: Oxford University Press, 1950

    MATH  Google Scholar 

  15. Jop P, Forterre Y, Pouliquen O A. A constitutive law for dense granular flows. Nature, 2006, 441: 727–730

    Article  ADS  Google Scholar 

  16. Spencer A J M. Theory of the kinematics of ideal soils under plane strain conditions. J Mech Phys Solids, 1964, 12: 337–351

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Seguin A, Bertho Y, Gondret P. Influence of confinement on granular penetration by impact. arXiv: 0805.4189

  18. Jiang Y, Liu M. From elasticity to hypoplasticity: Dynamics of granular solids. Phys Rev Lett, 2007, 99(10): 105501

    Article  ADS  Google Scholar 

  19. Kamrin K. Nonlinear elsto-plastic model for dense granular flow. Int J Plast, 2010, 26: 167–188

    Article  MATH  Google Scholar 

  20. Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1992

    Google Scholar 

  21. Tighe B P, Woldhuis E, Remmers J J, et al. Model for the saling of stress and fluctuations in flows near jamming. Phys Rev Lett, 2010, 105: 088303

    Article  ADS  Google Scholar 

  22. Jop P, Mansard V, Chaudhuri P, et al. Microscale rheology of a soft grassy materials close to yielding. Phys Rev Lett, 2012, 108: 148301

    Article  ADS  Google Scholar 

  23. Murthy T, Gnanamanickan E, Chandrasekar S. Deformation field in indentation of a granular ensemble. Phys Rev E, 2012, 85: 061306

    Article  ADS  Google Scholar 

  24. Hamm E, Tapia F, Melo F. Dynamics of shear bands in a dense granular material forced by a slowly moving rigid body. Phys Rev E, 2011, 84: 041304

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CaiShan Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, Y., Liu, C. Continuum description for the characteristic resistance sensed by a cylinder colliding against granular medium. Sci. China Phys. Mech. Astron. 56, 1428–1436 (2013). https://doi.org/10.1007/s11433-013-5142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5142-1

Keywords

Navigation