Skip to main content
Log in

A numerical study of a turbulent mixing layer and its generated noise

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A direct numerical simulation of a turbulent mixing layer with the Reynolds number 500 and the convective Mach number 0.6 is performed and the results obtained are used to study the turbulent flow field and its generated noise. In the present simulation, the numerical techniques of absorbing buffer zones, artificial convection velocity and spatial filtering are used to achieve nonreflecting boundary conditions. The self-similarity is used to validate the present numerical simulations. The large-scale coherent structures are plotted together with the acoustic waves, which demonstrates the directivity of acoustic waves. The Lighthill’s source and space-time correlations are further investigated. The main contributions to mixing noise are identified in terms of large-scale coherent structures, Lighthill’s source and space-time correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Colonius T, Lele S K, Moin P. Sound generation in a mixing layer. J Fluid Mech, 1997, 330: 375–409

    Article  ADS  MATH  Google Scholar 

  2. Lighthill M J. On sound generated aerodynamically.1. General theory. Proc R Soc Lond A-Math Phys Sci, 1952, 211: 564–587

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Lighthill M J. On sound generated aerodynamically.2. Turbulence as a source of sound. Proc R Soc Lond A-Math Phys Sci, 1954, 222: 1–32

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Taylor G I. The spectrum of turbulence. Proc R Soc Lond A-Math Phys Sci, 1938, 164: 476–490

    Article  ADS  Google Scholar 

  5. Kraichnan R H. The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech, 1959, 5: 497–543

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Kraichnan R H. Kolmogorov hypotheses and Eulerian turbulence theory. Phys Fluids, 1964, 7: 1723–1734

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. He G W, Zhang J B. Elliptic model for space-time correlations in turbulent shear flows. Phys Rev E, 2006, 73: 055303

    Article  ADS  Google Scholar 

  8. He G W, Wang M, Lele S K. On the computation of space-time correlations by large-eddy simulation. Phys Fluids, 2004, 16: 3859–3867

    Article  ADS  Google Scholar 

  9. Lee S, Lele S K, Moin P. Simulation of spatially evolving turbulence and the applicability of Taylors hypothesis in compressible flow. Phys Fluids A, 1992, 4: 1521–1530

    Article  ADS  MATH  Google Scholar 

  10. Yao H D, He G W, Wang M, et al. Time correlations of pressure in isotropic turbulence. Phys Fluids, 2008, 20: 025105

    Article  ADS  Google Scholar 

  11. Fleury V, Bailly C, Jondeau E, et al. Space-time correlations in two subsonic jets using dual particle image velocimetry measurements. AIAA J, 2008, 46: 2498–2509

    Article  ADS  Google Scholar 

  12. Cavalieri A V G, Jordan P, Gervals Y, et al. Intermittent sound generation and its control in a free-shear flow. Phys Fluids, 2010, 22: 115113

    Article  ADS  Google Scholar 

  13. Bodony D J. Aeroacoustic prediction of turbulent free shear flows. Dissertation for the Doctoral Degree. Stanford: Stanford University, 2004

    Google Scholar 

  14. Freund J B, Lele S K, Moin P. Compressibility effects in a turbulent annular mixing layer. part 1. Turbulence and growth rate. J Fluid Mech, 2000, 421: 229–267

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Freund J B, Moin P, Lele S K. Compressibility effects in a turbulent annular mixing layer. part 2. Mixing of a passive scalar. J Fluid Mech, 2000, 421: 269–292

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Freund J B. Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J Fluid Mech, 2001, 438: 277–305

    Article  ADS  MATH  Google Scholar 

  17. Freund J B. Noise-source turbulence statistics and the noise from a Mach 0.9 jet. Phys Fluids, 2003, 15: 1788–1799

    Article  ADS  Google Scholar 

  18. Lui C C M. A numerical investigation of shock-associated noise. Dissertation for the Doctoral Degree. Stanford: Stanford University, 2003

    Google Scholar 

  19. Schaupp C, Sesterhenn J, Friedrich R. On amethod for direct numerical simulation of shear layer/compression wave interaction for aeroacoustic investigations. Comput Fluids, 2008, 37: 463–474

    Article  MATH  Google Scholar 

  20. Lele S K. Compact finite-difference schemes with spectral-like resolution. J Comput Phys, 1992, 103: 16–42

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Blaisdell G A, Spyropoulos E T, Qin J H. The effect of the formulation of nonlinear terms on aliasing errors in spectral methods. Appl Numer Math, 1996, 21: 207–219

    Article  MATH  MathSciNet  Google Scholar 

  22. Stanescu D, Habashi W G. 2Nstorage low dissipation and dispersion Runge-Kutta schemes for computational acoustics. J Comput Phys, 1998, 143: 674–681

    Article  ADS  MATH  Google Scholar 

  23. Thompson K W. Time-dependent boundary-conditions for hyperbolic systems. J Comput Phys, 1987, 68: 1–24

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Thompson K W. Time-dependent boundary-conditions for hyperbolic systems.2. J Comput Phys, 1990, 89: 439–461

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Bell J H, Mehta R D. Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J, 1990, 28: 2034–2042

    Article  ADS  Google Scholar 

  26. Samimy H, Elliot G S. Effect of compressibility on the characteristics of free shear layers. AIAA J, 1990, 28: 439–445

    Article  ADS  Google Scholar 

  27. Freund J B, Lele S K, Moini P. Calculation of the radiated sound field using an open Kirchhoff surface. AIAA J, 1996, 34: 909–916

    Article  ADS  MATH  Google Scholar 

  28. Guo L, Li D, Zhang X, et al. LES prediction of space-time correlations in turbulent shear flows. Acta Mech Sin, 2012, 28: 993–998

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoWei He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Guo, L., Zhang, X. et al. A numerical study of a turbulent mixing layer and its generated noise. Sci. China Phys. Mech. Astron. 56, 1157–1164 (2013). https://doi.org/10.1007/s11433-013-5098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5098-1

Keywords

Navigation