Skip to main content
Log in

The security analysis of a threshold proxy quantum signature scheme

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In the YW threshold proxy quantum signature scheme proposed by Yang and Wen, it is found that the basic signature key is the same as the basic verification key, which means that the bitwise exclusive OR (XOR) of the t proxy signature keys is exactly the XOR of the t proxy verification keys. Therefore, the proxy signers can deny their signature and the specific verifiers can forge a legal signature. Furthermore, an attacker can obtain a legal threshold proxy signature for an arbitrary new message. These findings show that there are hidden security loopholes that should be carefully constructed in designing more efficent YW-scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. New York: IEEE, 1984. 175–179

    Google Scholar 

  2. Ekert A. Quantum cryptography based on Bell theorem. Phys Rev Lett, 1991, 67: 661–664

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett C H. Quantum cryptography using any two non-orthogonal states. Phys Rev Lett, 1992, 68: 3121–3124

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Deng F G, Long G L. Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys Rev A, 2004, 70: 012311

    Article  ADS  Google Scholar 

  5. Hang P, Zhu J, He G Q, et al. Study on the security of discrete-variable quantum key distribution over non-Markovian channels. J Phys B-At Mol Opt Phys, 2012, 45: 135501

    Article  ADS  Google Scholar 

  6. Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett, 2002, 89: 187902

    Article  ADS  Google Scholar 

  7. Yang C W, Tsai C W, Hwang T. Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci China-Phys Mech Astron, 2011, 54(3): 496–501

    Article  ADS  Google Scholar 

  8. Cao W F, Yang Y G, Wen Q Y. Quantum secure direct communication with cluster states. Sci China-Phys Mech Astron, 2010, 53(7): 1271–1275

    Article  ADS  Google Scholar 

  9. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A, 2003, 68(4): 042317

    Article  ADS  Google Scholar 

  10. Gu B, Zhang C Y, Cheng G S, et al. Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci China-Phys Mech Astron, 2011, 54(5): 942–947

    Article  ADS  Google Scholar 

  11. Cai Q Y, Li B W. Deterministic secure communication without using entanglement. Chin Phys Lett, 2004, 21(4): 601–603

    Article  ADS  Google Scholar 

  12. Yan F L, Zhang X Q. A scheme for secure direct communication using EPR pairs and teleportation. Eur Phys J B, 2004, 41: 75–78

    Article  MathSciNet  ADS  Google Scholar 

  13. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A, 2005, 71: 044305

    Article  ADS  Google Scholar 

  14. Man Z X, Zhang Z J, Li Y. Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin Phys Lett, 2005, 22(1): 18–21

    Article  ADS  Google Scholar 

  15. Yang Y G. Threshold quantum secure direct communication without entanglement. Sci China Ser G-Phys Mech Astron, 2008, 51(2): 176–183

    Article  ADS  MATH  Google Scholar 

  16. Yang Y G, Wen Q Y, Zhu F C. An efficient quantum secure direct communication scheme with authentication. Chin Phys, 2007, 16(7): 1838–1842

    Article  ADS  Google Scholar 

  17. Gao F, Wen Q Y, Zhu F C. Teleportation attack on the QSDC protocol with a random basis and order. Chin Phys B, 2008, 17(9): 3189–3193

    Article  ADS  Google Scholar 

  18. Long G L, Wang C, Li Y S. Quantum secure direct communication (in Chinese). Sci Sin-Phys Mech Astron, 2011, 41: 332–342

    Article  Google Scholar 

  19. Hillery M, Buzek V, Berthiaume A. Quantum secret sharing. Phys Rev A, 1999, 59(3): 1829–1834

    Article  MathSciNet  ADS  Google Scholar 

  20. Karlsson A, Koashi M, Imoto N. Quantum entanglement for secret sharing and secret splitting. Phys Rev A, 1999, 59(1): 162–168

    Article  ADS  Google Scholar 

  21. Cleve R, Gottesman D, Lo H K. How to share a quantum secret. Phys Rev Lett, 1999, 83: 648–651

    Article  ADS  Google Scholar 

  22. Xiao L, Long G L, Deng F G, et al. Efficient multiparty quantum secret sharing schemes. Phys Rev A, 2004, 69(5): 052307

    Article  ADS  Google Scholar 

  23. Zhang Z J, Li Y, Man Z X. Multiparty quantum secret sharing. Phys Rev A, 2005, 71: 044301

    Article  MathSciNet  ADS  Google Scholar 

  24. Zhang Z J, Man X Z. Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys Rev A, 2005, 72: 022303

    Article  MathSciNet  ADS  Google Scholar 

  25. Zhang Z J, Yang J, Man Z X, et al. Multiparty secret sharing of quantum information using and identifying Bell states. Eur Phys J D, 2005, 33: 133–136

    Article  ADS  Google Scholar 

  26. Yan F L, Gao T, Li Y C. Quantum secret sharing between multiparty and multiparty with four states. Sci China Ser G-Phys Mech Astron, 2007, 50(5): 572–580

    Article  ADS  MATH  Google Scholar 

  27. Gao T, Yan F L, Li Y C. Quantum secret sharing between m-party and n-party with six states. Sci China Ser G-Phys Mech Astron, 2009, 52(8): 1191–1202

    Article  ADS  Google Scholar 

  28. Qin S J. Research on Protocols of Quantum Secret Sharing: Design and Analysis (in Chinese). Dissertation for the Doctoral Degree. Beijing: Beijing University of Posts and Telecommunications, 2008

    Google Scholar 

  29. Zhang S, Zhang S L, Wang L. Quantum secret sharing between multiparty and multiparty with squeezed state (in Chinese). Sci Sin-Phys Mech Astron, 2011, 41: 855–861

    Article  Google Scholar 

  30. DuŠek M, Haderka O, Hendrych M, et al. Quantum identification system. Phys Rev A, 1999, 60: 149–156

    Article  ADS  Google Scholar 

  31. Zeng G H, Zhang W P. Identity verification in quantum key distribution. Phys Rev A, 2001, 61: 022303

    Article  ADS  Google Scholar 

  32. Zhang Z S, Zeng G H, Zhou N R, et al. Quantum identity authentication based on ping-pong technique for photons. Phys Lett A, 2006, 356(3): 199–205

    Article  ADS  MATH  Google Scholar 

  33. Yang Y G, Wen Q Y, Zhang X. Multiparty simultaneous quantum identity authentication with secret sharing. Sci China Ser G-Phys Mech Astron, 2008, 51(3): 321–327

    Article  ADS  MATH  Google Scholar 

  34. Zhang X L. One-way quantum identity authentication based on public key. Chin Sci Bull, 2009, 54: 2018–2021

    Article  Google Scholar 

  35. Zhou N R, Zeng G H, Zeng W J, et al. Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt Commun, 2005, 254: 380–388

    Article  ADS  Google Scholar 

  36. Huang P, Zhu J, Lu Y, et al. Quantum identity authentication using Gaussian-modulated squeezed states. Int J Quantum Inf, 2011, 9(2): 701–721

    Article  MathSciNet  MATH  Google Scholar 

  37. Zeng G H, Ma W P, Wang X M, et al. Signature scheme based on quantum cryptography. Acta Electron Sin, 2001, 29(8): 1098–1100

    Google Scholar 

  38. Gottesman D, Chuang I. Quantum Digital Signatures. Technical Report, ArXiv: abs/quant-ph/0105032, 2001

  39. Zeng G H, Christoph K. An arbitrated quantum signature scheme. Phys Rev A, 2002, 65: 042312

    Article  ADS  Google Scholar 

  40. Lü X, Deng F G. An arbitrated quantum message signature scheme. In: CIS2004 Lecture Notes in Computer Science 3314. Berlin: Springer-Verlag, 2004

    Google Scholar 

  41. Li Q, Chan W H, Long D Y. Arbitrated quantum signature scheme using bell states. Phys Rev A, 2009, 79(4): 054307

    Article  MathSciNet  ADS  Google Scholar 

  42. Yang Y G, Wen Q Y. Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt Commun, 2010, 283(16): 3198–3201

    Article  ADS  Google Scholar 

  43. Gao F, Qin S J, Guo F Z, et al. Cryptanalysis of the arbitrated quantum signature protocols. Phys Rev A, 2011, 84: 022344

    Article  ADS  Google Scholar 

  44. Lu H, Fung C H F, Ma X F, et al. Unconditional security proof of a deterministic quantum key distribution with a two-way quantum channel. Phys Rev A, 2011, 84: 042344

    Article  ADS  Google Scholar 

  45. Shamir A. How to share a secret. Commun ACM, 1979, 22(11): 612–613

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang Y G, Wen Q Y. Quantum threshold group signature. Sci China Ser G-Phys Mech Astron, 2008, 51(10): 1505–1514

    Article  ADS  Google Scholar 

  47. Zhou J X, Zhou Y J, Niu X X, et al. Quantum proxy signature scheme with public verifiability. Sci China-Phys Mech Astron, 2011, 54(10): 1828–1832

    Article  ADS  Google Scholar 

  48. Yang Y G, Wen Q Y. Threshold proxy quantum signature scheme with threshold shared verification. Sci China Ser G-Phys Mech Astron, 2008, 51(8): 1079–1088

    Article  ADS  MATH  Google Scholar 

  49. Cai Q Y. The “Ping-Pong” protocol can be attacked without eavesdropping. Phys Rev Lett, 2003, 91: 109801

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianHong Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Zhang, S. & Chang, Z. The security analysis of a threshold proxy quantum signature scheme. Sci. China Phys. Mech. Astron. 56, 519–523 (2013). https://doi.org/10.1007/s11433-013-5000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5000-1

Keywords

Navigation