Skip to main content
Log in

A new pathway towards all-electric spintronics: electric-field control of spin states through surface/interface effects

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Manipulation of spin states via purely electric means forms the research branch “all-electric spintronics”. In this paper, we briefly review recent progress relating to the all-electric spintronics, including electric-field control of Rashba spin-orbit coupling, magnetic anisotropy, exchange bias, ferromagnetism, and other forms of magnetoelectric coupling. Special focus is given to surface/interface systems, including semiconductor (oxide) heterostructures, magnetic/nonmagnetic surfaces, semiconductor-metal interfaces, and other nanostructures, which can be good candidates for functional materials for spintronic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294: 1488–1495

    Article  ADS  Google Scholar 

  2. Žutić I, Fabian J, Das Sarma S. Spintronics: Fundamentals and applications. Rev Mod Phys, 2004, 76: 323–410

    Article  ADS  Google Scholar 

  3. Ohno H. A window on the future of spintronics. Nat Mater, 2010, 9: 952–954

    Article  ADS  Google Scholar 

  4. Bader S D, Parkin S S P. Spintronics. Annu Rev Condens Matter Phys, 2010, 1: 71–88

    Article  ADS  Google Scholar 

  5. Weisheit M, Fahler S, Marty A, et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science, 2007, 315: 349–351

    Article  ADS  Google Scholar 

  6. Duan C G, Velev J P, Sabirianov R F, et al. Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface. Appl Phys Lett, 2008, 92: 122905

    Article  ADS  Google Scholar 

  7. Maruyama T, Shiota Y, Nozaki T, et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat Nanotech, 2009, 4: 158–161

    Article  ADS  Google Scholar 

  8. Ohno H, Chiba D, Matsukura F, et al. Electric-field control of ferromagnetism. Nature, 2000, 408: 944–946

    Article  ADS  Google Scholar 

  9. Martin L W, Chu Y H, Holcomb M B, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater, 2008, 7: 478–482

    Article  ADS  Google Scholar 

  10. Chu Y H, Martin L W, Holcomb M B, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater, 2008, 7: 478–482

    Article  ADS  Google Scholar 

  11. Borisov P, Hochstrat A, Chen X, et al. Magnetoelectric switching of exchange bias. Phys Rev Lett, 2005, 94: 117203

    Article  ADS  Google Scholar 

  12. Binek C, Hochstrat A, Chen X, et al. Electrically controlled exchange bias for spintronic applications. J Appl Phys, 2005, 97: 10C514

    Article  Google Scholar 

  13. Duan C G, Jaswal S S, Tsymbal E Y. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys Rev Lett, 2006, 97: 047201

    Article  ADS  Google Scholar 

  14. Rondinelli J M, Stengel M, Spaldin N A. Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nat Nanotech, 2008, 3: 46–50

    Article  ADS  Google Scholar 

  15. Duan C G, Velev J P, Sabirianov R F, et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys Rev Lett, 2008, 101: 137201

    Article  ADS  Google Scholar 

  16. Nakamura K, Shimabukuro R, Fujiwara Y, et al. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys Rev Lett, 2009, 102: 187201

    Article  ADS  Google Scholar 

  17. Tsujikawa M, Oda T. Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): A first-principles study. Phys Rev Lett, 2009, 102: 247203

    Article  ADS  Google Scholar 

  18. Zhang H B, Richter M, Koepernik K, et al. Electric-field control of surface magnetic anisotropy: a density functional approach. New J Phys, 2009, 11: 043007

    Article  Google Scholar 

  19. Kohda M, Bergsten T, and Nitta J. Manipulating spin-orbit interaction in semiconductors. J Phys Soc Jpn, 2008, 77: 031008

    Article  ADS  Google Scholar 

  20. Bihlmayer G, Koroteev Y M, Echenique P M, et al. The Rashba-effect at metallic surfaces. Surf Sci, 2006, 600: 3888–3891

    Article  ADS  Google Scholar 

  21. Koga T, Nitta J, Datta S. Nonmagnetic control of spin transport in InGaAs quantum wells. Physica E-Low-Dimensional Syst Nanostruct, 2003, 18: 161–162

    Article  ADS  Google Scholar 

  22. Winkler R, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Berlin, New York: Springer, 2003

    Book  Google Scholar 

  23. Yu A B, Rashba E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J Phys C-Solid State Phys, 1984, 17: 6039–6045

    Article  Google Scholar 

  24. Nitta J, Akazaki T, Takayanagi H, et al. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys Rev Lett, 1997, 78: 1335–1338

    Article  ADS  Google Scholar 

  25. Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin hall effect. Phys Rev Lett, 2004, 92: 126603

    Article  ADS  Google Scholar 

  26. Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1990, 56: 665–667

    Article  ADS  Google Scholar 

  27. Hirsch J E. Spin hall effect. Phys Rev Lett, 1999, 83: 1834–1837

    Article  ADS  Google Scholar 

  28. Tse W K, Das Sarma S. Intrinsic spin Hall effect in the presence of extrinsic spin-orbit scattering. Phys Rev B, 2006, 74: 245309

    Article  ADS  Google Scholar 

  29. Tse W K, Fabian J, Žutić I, et al. Spin accumulation in the extrinsic spin Hall effect. Phys Rev B, 2005, 72: 241303

    Article  ADS  Google Scholar 

  30. Kato Y K, Myers R C, Gossard A C, et al. Observation of the spin hall effect in semiconductors. Science, 2004, 306: 1910–1913

    Article  ADS  Google Scholar 

  31. Wunderlich J, Kaestner B, Sinova J, et al. Experimental observation of the spin-hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys Rev Lett, 2005, 94: 047204

    Article  ADS  Google Scholar 

  32. Wei D H, Niimi Y, Gu B, et al. The spin Hall effect as a probe of nonlinear spin fluctuations. Nat Commun, 2012, 3: 1058

    Article  Google Scholar 

  33. Nitta J, Koga T. Rashba spin-orbit interaction and its applications to spin-interference effect and spin-filter device. J Supercond, 2003, 16: 689–696

    Article  ADS  Google Scholar 

  34. Gong S J, Yang Z Q. Spin filtering implemented through Rashba spin-orbit coupling and weak magnetic modulations. J Appl Phys, 2007, 102: 033706–033704

    Article  ADS  Google Scholar 

  35. Koga T, Nitta J, van Veenhuizen M. Ballistic spin interferometer using the Rashba effect. Phys Rev B, 2004, 70: 161302

    Article  ADS  Google Scholar 

  36. Krupin O, Bihlmayer G, Starke K, et al. Rashba effect at magnetic metal surfaces. Phys Rev B, 2005, 71: 201403

    Article  ADS  Google Scholar 

  37. Sakamoto K, Oda T, Kimura A, et al. Abrupt rotation of the rashba spin to the direction perpendicular to the surface. Phys Rev Lett, 2009, 102: 096805

    Article  ADS  Google Scholar 

  38. LaShell S, McDougall B A, Jensen E. Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy. Phys Rev Lett, 1996, 77: 3419–3422

    Article  ADS  Google Scholar 

  39. Nicolay G, Reinert F, Hüfner S, et al. Spin-orbit splitting of the L-gap surface state on Au(111) and Ag(111). Phys Rev B, 2001, 65: 033407

    Article  ADS  Google Scholar 

  40. Gu B, Sugai I, Ziman T, et al. Surface-assisted spin hall effect in Au films with Pt impurities. Phys Rev Lett, 2010, 105: 216401

    Article  ADS  Google Scholar 

  41. Koroteev Y M, Bihlmayer G, Gayone J E, et al. Strong spin-orbit splitting on Bi surfaces. Phys Rev Lett, 2004, 93: 046403

    Article  ADS  Google Scholar 

  42. Varykhalov A, Marchenko D, Scholz M R, et al. Ir(111) Surface state with giant Rashba splitting persists under graphene in air. Phys Rev Lett, 2012, 108: 066804

    Article  ADS  Google Scholar 

  43. Nuber A, Braun J, Forster F, et al. Surface versus bulk contributions to the Rashba splitting in surface systems. Phys Rev B, 2011, 83: 165401

    Article  ADS  Google Scholar 

  44. Bendounan A, Aït-Mansour K, Braun J, et al. Evolution of the Rashba spin-orbit-split Shockley state on Ag/Pt(111). Phys Rev B, 2011, 83: 195427

    Article  ADS  Google Scholar 

  45. Ast C R, Henk J, Ernst A, et al. Giant spin splitting through surface alloying. Phys Rev Lett, 2007, 98: 186807

    Article  ADS  Google Scholar 

  46. Heide M, Bihlmayer G, Mavropoulos Ph, et al. Spin-orbit Driven Physics at Surfaces. Newsletter Psi-K Network, 2006, 78: 1–39

    Google Scholar 

  47. Gong S J, Duan C G, Zhu Y, et al. Controlling Rashba spin splitting in Au(111) surface states through electric field. in press

  48. Takayama A, Sato T, Souma S, et al. Tunable spin polarization in bismuth ultrathin film on Si(111). Nano Lett, 2012, 12: 1776–1779

    Article  ADS  Google Scholar 

  49. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306: 666–669

    Article  ADS  Google Scholar 

  50. Kane C L, Mele E J. Quantum spin Hall effect in graphene. Phys Rev Lett, 2005, 95: 226801

    Article  ADS  Google Scholar 

  51. Yao Y G, Ye F, Qi X L, et al. Spin-orbit gap of graphene: First-principles calculations. Phys Rev B, 2007, 75: 041401

    Article  ADS  Google Scholar 

  52. Gong S J, Li Z Y, Yang Z Q, et al. Spintronic properties of graphene films grown on Ni(111) substrate. J Appl Phys, 2011, 110: 043704

    Article  ADS  Google Scholar 

  53. van Gelderen R, Smith C M. Rashba and intrinsic spin-orbit interactions in biased bilayer graphene. Phys Rev B, 2010, 81: 125435

    Article  ADS  Google Scholar 

  54. Castro Neto A H, Guinea F. Impurity-induced spin-orbit coupling in graphene. Phys Rev Lett, 2009, 103: 026804

    Article  ADS  Google Scholar 

  55. Huertas-Hernando D, Guinea F, Brataas A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys Rev B, 2006, 74: 155426

    Article  ADS  Google Scholar 

  56. Dedkov Y S, Fonin M, Rüdiger U, et al. Rashba effect in the graphene/Ni(111) system. Phys Rev Lett, 2008, 100: 107602

    Article  ADS  Google Scholar 

  57. Rader O, Varykhalov A, Sánchez-Barriga J, et al. Is there a Rashba effect in graphene on 3d ferromagnets? Phys Rev Lett, 2009, 102: 057602

    Article  ADS  Google Scholar 

  58. Gong C, Lee G, Shan B, et al. First-principles study of metal—graphene interfaces. J Appl Phys, 2010, 108: 123711–123718

    Article  ADS  Google Scholar 

  59. Zavaliche F, Zhao T, Zheng H, et al. Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett, 2007, 7: 1586–1590

    Article  ADS  Google Scholar 

  60. Duan C G. Interface/surface magnetoelectric effects: New routes to the electric field control of magnetism. Front Phys, 2012, 7: 375–379

    Article  Google Scholar 

  61. Sahoo S, Polisetty S, Duan C G, et al. Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling. Phys Rev B, 2007, 76: 092108

    Article  ADS  Google Scholar 

  62. Meyerheim H L, Klimenta F, Ernst A, et al. Structural secrets of multiferroic interfaces. Phys Rev Lett, 2011, 106: 087203

    Article  ADS  Google Scholar 

  63. Shu L, Li Z, Ma J, et al. Thickness-dependent voltage-modulated magnetism in multiferroic heterostructures. Appl Phys Lett, 2012, 100: 022405

    Article  ADS  Google Scholar 

  64. Niranjan M K, Velev J P, Duan C G, et al. Magnetoelectric effect at the Fe3O4/BaTiO3 (001) interface: A first-principles study. Phys Rev B, 2008, 78: 104405

    Article  ADS  Google Scholar 

  65. Park M S, Song J H, Freeman A J. Charge imbalance and magnetic properties at the Fe3O4/BaTiO3 interface. Phys Rev B, 2009, 79: 024420

    Article  ADS  Google Scholar 

  66. Picozzi S, Yamauchi K, Sanyal B. Interface effects at a half-metal/ferroelectric junction. Appl Phys Lett, 2007, 91: 062506

    Article  ADS  Google Scholar 

  67. Ma J, Hu J M, Li Z, et al. Recent Progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv Mater, 2011, 23: 1062–1087

    Article  Google Scholar 

  68. Fechner M, Zahn P, Ostanin S, et al. Switching magnetization by 180° with an electric field. Phys Rev Lett, 2012, 108: 197206

    Article  ADS  Google Scholar 

  69. Zhang S. Spin-dependent surface screening in ferromagnets and magnetic tunnel junctions. Phys Rev Lett, 1999, 83: 640–643

    Article  ADS  Google Scholar 

  70. Niranjan M K, Duan C G, Jaswal S S, et al. Electric field effect on magnetization at the Fe/MgO(001) interface. Appl Phys Lett, 2010, 96: 222504

    Article  ADS  Google Scholar 

  71. Wang W G, Li M, Hageman S, et al. Electric-field-assisted switching in magnetic tunnel junctions. Nat Mater, 2012, 11: 64–68

    Article  ADS  Google Scholar 

  72. Shiota Y, Nozaki T, Bonell F, et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat Mater, 2012, 11: 39–43

    Article  ADS  Google Scholar 

  73. Nozaki T, Shiota Y, Miwa S, et al. Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat Phys, 2012, 8: 492–497

    Article  Google Scholar 

  74. Gong S J, Duan C G, Zhu Z Q, et al. Manipulation of magnetic anisotropy of Fe/graphene by charge injection. Appl Phys Lett, 2012, 100: 122410–122413

    Article  ADS  Google Scholar 

  75. Laukhin V, Skumryev V, Martí X, et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys Rev Lett, 2006, 97: 227201

    Article  ADS  Google Scholar 

  76. Martin L W, Chu Y H, Holcomb M B, et al. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett, 2008, 8: 2050–2055

    Article  ADS  Google Scholar 

  77. Park Y D, Hanbicki A T, Erwin S C, et al. A Group-IV ferromagnetic semiconductor: MnxGe1−x . Science, 2002, 295: 651–654

    Article  ADS  Google Scholar 

  78. Boukari H, Kossacki P, Bertolini M, et al. Light and electric field control of ferromagnetism in magnetic quantum structures. Phys Rev Lett, 2002, 88: 207204

    Article  ADS  Google Scholar 

  79. Chiba D, Yamanouchi M, Matsukura F, et al. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science, 2003, 301: 943–945

    Article  ADS  Google Scholar 

  80. Chiba D, Matsukura F, Ohno H. Electric-field control of ferromagnetism in (Ga,Mn)As. Appl Phys Lett, 2006, 89: 162505–162503

    Article  ADS  Google Scholar 

  81. He Q, Chu Y H, Heron J T, et al. Electrically controllable spontaneous magnetism in nanoscale mixed phase multiferroics. Nat Commun, 2011, 2: 255

    Article  Google Scholar 

  82. Heron J T, Trassin M, Ashraf K, et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys Rev Lett, 2011, 107: 217202

    Article  ADS  Google Scholar 

  83. Ding H C, Duan C G. Electric-field control of magnetic ordering in the tetragonal-like BiFeO3. Europhys Lett, 2012, 97: 57007

    Article  ADS  Google Scholar 

  84. Lahtinen T H E, Franke K J A, van Dijken S. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci Rep, 2012, 2: 258

    Article  Google Scholar 

  85. Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons. Nature, 2006, 444: 347–349

    Article  ADS  Google Scholar 

  86. Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators. Phys Rev B, 2008, 78: 195424

    Article  ADS  Google Scholar 

  87. Bauer U, Przybylski M, Kirschner J, et al. Magnetoelectric charge trap memory. Nano Lett, 2012, 12: 1437–1442

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunGang Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, S., Ding, H., Zhu, W. et al. A new pathway towards all-electric spintronics: electric-field control of spin states through surface/interface effects. Sci. China Phys. Mech. Astron. 56, 232–244 (2013). https://doi.org/10.1007/s11433-012-4973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4973-5

Keywords

Navigation