Skip to main content
Log in

Carbon-based spintronics

  • Review
  • Progress of Projects Supported by NSFC · Spintronics
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Carbon-based spintronics refers mainly to the spin injection and transport in carbon materials including carbon nanotubes, graphene, fullerene, and organic materials. In the last decade, extraordinary development has been achieved for carbon-based spintronics, and the spin transport has been studied in both local and nonlocal spin valve devices. A series of theoretical and experimental studies have been done to reveal the spin relaxation mechanisms and spin transport properties in carbon materials, mostly for graphene and carbon nanotubes. In this article, we provide a brief review on spin injection and transport in graphene, carbon nanotubes, fullerene and organic thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson M, Silsbee R H. Interficial charge-spin couplin — injection and detection of spin magnetization in metals. Phys Rev Lett, 1985, 55(17): 1790–1793

    Article  ADS  Google Scholar 

  2. Baumberg J J, Awschalom D D, Samarth N et al. Spin beats and dynamical magnetization in quantum structures. Phys Rev Lett, 1994, 72(5): 717–720

    Article  ADS  Google Scholar 

  3. Lou X H, Awschalom D D, Samarth N, et al. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices. Nat Phys, 2007, 3(3): 197–202

    Article  Google Scholar 

  4. Tsukagoshi K, Alphenaar B W, Ago H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature, 1999, 401(6753): 572–574

    Article  ADS  Google Scholar 

  5. Zhao B, Monch I, Vinzelberg H, et al. Spin-coherent transport in ferromagnetically contacted carbon nanotubes. Appl Phys Lett, 2002, 80(17): 3144–3146

    Article  ADS  Google Scholar 

  6. Kim J R, So H M, Kim J J, et al. Spin-dependent transport properties in a single-walled carbon nanotube with mesoscopic Co contacts. Phys Rev B, 2002, 66(23): 233401

    Article  ADS  Google Scholar 

  7. Krompiewski S. Spin-polarized transport through carbon nanotubes. Physica Status Solidi B-Basic Solid State Phys, 2005, 242(2): 226–233

    Article  ADS  Google Scholar 

  8. Hill E W, Geim A K, Novoselov K, et al. Graphene spin valve devices. IEEE Trans Magn, 2006, 42(10): 2694–2696

    Article  ADS  Google Scholar 

  9. Tombros N, Jozsa C, Popinciuc M, et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 2007, 448(7153): 571–574

    Article  ADS  Google Scholar 

  10. Cho S J, Chen Y F, Fuhrer M S. Gate-tunable graphene spin valve. Appl Phys Lett, 2007, 91(12): 123105

    Article  ADS  Google Scholar 

  11. Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Article  ADS  Google Scholar 

  12. Huertas-Hernando D, Guinea F, Brataas A. Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps. Phys Rev B, 2006, 74(15): 155426

    Article  ADS  Google Scholar 

  13. Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Modern Phys, 2009, 81(1): 109–162

    Article  ADS  Google Scholar 

  14. Neto A C, Guinea F, Peres N M R. Drawing conclusions from graphene. Phys World, 2006, 19(11): 33–37

    Google Scholar 

  15. Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev Modern Phys, 2009, 81(1): 109–162

    Article  ADS  Google Scholar 

  16. Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

    Article  ADS  Google Scholar 

  17. Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204

    Article  ADS  Google Scholar 

  18. Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene. Nat Phys, 2006, 2(9): 620–625

    Article  Google Scholar 

  19. Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotech, 2008, 3(8): 491–495

    Article  ADS  Google Scholar 

  20. Elias D C, Gorbachev R V, Mayorov A S, et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat Phys, 2011, 7(9): 701–704

    Article  Google Scholar 

  21. Schmidt G, Ferrand D, Molenkamp L W, et al. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B, 2000, 62(8): R4790–R4793

    Article  ADS  Google Scholar 

  22. Wang W H, Pi K, Li Y, et al. Magnetotransport properties of mesoscopic graphite spin valves. Phys Rev B, 2008, 77(2): 020402

    Article  ADS  Google Scholar 

  23. Dlubak B, Martin M B, Deranlot C, et al. Highly efficient spin transport in epitaxial graphene on SiC. Nat Phys, 2012, 8(7): 557–561

    Article  Google Scholar 

  24. de Heer W A, Berger C, Ruan M, et al. Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proc National Acad Sci USA, 2011, 108(41): 16900–16905

    Article  ADS  Google Scholar 

  25. Berger C, Song Z M, Li T B, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B, 2004, 108(52): 19912–19916

    Article  Google Scholar 

  26. Johnson M, Silsbee R H. Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface. Phys Rev B, 1988, 37(10): 5312–5325

    Article  ADS  Google Scholar 

  27. Jedema F J, Heersche H B, Filip A T, et al. Electrical detection of spin precession in a metallic mesoscopic spin valve. Nature, 2002, 416(6882): 713–716

    Article  ADS  Google Scholar 

  28. Tombros N, van der Molen S J, van Wees B J. Separating spin and charge transport in single-wall carbon nanotubes. Phys Rev B, 2006, 73(23): 233403

    Article  ADS  Google Scholar 

  29. Johnson M, Silsbee R H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys Rev B, 1987, 35(10): 4959–4972

    Article  ADS  Google Scholar 

  30. Aronov A G. Spin injection in metals and polarization of nuclei. JETP Lett, 1976, 24(1): 32–34

    ADS  Google Scholar 

  31. Yang T Y, Balakrishnan J, Volmer F, et al. Observation of long spin-relaxation times in bilayer graphene at room temperature. Phys Rev Lett, 2011, 107(4): 047206

    Article  ADS  Google Scholar 

  32. Han W, Kawakami R K. Spin Relaxation in single-layer and bilayer graphene. Phys Rev Lett, 2011, 107(4): 047207

    Article  ADS  Google Scholar 

  33. Maassen T, Dejene F K, Guimarães M H D, et al. Comparison between charge and spin transport in few-layer graphene. Phys Rev B, 2011, 83(11): 115410

    Article  ADS  Google Scholar 

  34. Rashba E I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys Rev B, 2000, 62(24): R16267–R16270

    Article  ADS  Google Scholar 

  35. Han W, Pi K, Bao W, et al. Electrical detection of spin precession in single layer graphene spin valves with transparent contacts. Appl Phys Lett, 2009, 94(22): 222109

    Article  ADS  Google Scholar 

  36. Han W, Wang W H, Pi K, et al. Electron-hole asymmetry of spin injection and transport in single-layer graphene. Phys Rev Lett, 2009, 102(13): 137205

    Article  ADS  Google Scholar 

  37. Han W, Pi K, McCreary K M, et al. Tunneling spin injection into single layer graphene. Phys Rev Lett, 2010, 105(16): 167202

    Article  ADS  Google Scholar 

  38. Popinciuc M, Józsa C, Zomer P J, et al. Electronic spin transport in graphene field-effect transistors. Phys Rev B, 2009, 80(21): 214427

    Article  ADS  Google Scholar 

  39. Józsa C, Popinciuc M, Tombros N, et al. Controlling the efficiency of spin injection into graphene by carrier drift. Phys Rev B, 2009, 79(8): 081402

    Article  ADS  Google Scholar 

  40. Elliott R J. Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors. Phys Rev, 1954, 96(2): 266–279

    Article  ADS  MATH  Google Scholar 

  41. Yafet Y. G-factors and spin-lattice relaxation of conduction electrons. Solid State Phys-Adv Res Appl, 1963, 14: 1–98

    Google Scholar 

  42. Dyakonov M I, Perel V I. Spin relaxation of conduction electrons in noncentrosymmetric semiconductors. Sov Phys Solid State Ussr, 1972, 13(12): 3023–3026

    Google Scholar 

  43. Dymnikov V D, Dyakonov M I, Perel V I. Anisotropy of momentum distribution of photoexcited electrons and polarization of hot luminescence in semiconductors. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki, 1976, 71(12): 2373–2380

    Google Scholar 

  44. Ertler C, Konschuh S, Gmitra M, et al. Electron spin relaxation in graphene: The role of the substrate. Phys Rev B, 2009, 80(4): 041405

    Article  ADS  Google Scholar 

  45. Castro Neto A H, Guinea F. Impurity-induced spin-orbit coupling in graphene. Phys Rev Lett, 2009, 103(2): 026804

    Article  ADS  Google Scholar 

  46. Józsa C, Maassen T, Popinciuc M, et al. Linear scaling between momentum and spin scattering in graphene. Phys Rev B, 2009, 80(24): 241403

    Article  Google Scholar 

  47. Pi K, Han W, McCreary K M, et al. Manipulation of spin transport in graphene by surface chemical doping. Phys Rev Lett, 2010, 104(18): 187201

    Article  ADS  Google Scholar 

  48. Han W, Chen J R, Wang D Q, et al. Spin relaxation in single-layer graphene with tunable mobility. Nano Lett, 2012, 12(7): 3443–3447

    Article  ADS  Google Scholar 

  49. Huertas-Hernando D, Guinea F, Brataas A. Spin relaxation times in disordered graphene. Eur Phys J, 2007, 148: 177–181

    Google Scholar 

  50. Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146(9–10): 351–355

    Article  ADS  Google Scholar 

  51. Guinea F. Charge distribution and screening in layered graphene systems. Phys Rev B, 2007, 75(23): 235433

    Article  ADS  Google Scholar 

  52. Koshino M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys Rev B, 2010, 81(12): 125304

    Article  ADS  Google Scholar 

  53. Wang D Q, Liu X F, He L, et al. Manipulating graphene mobility and charge neutral point with ligand-bound nanoparticles as charge reservoir. Nano Lett, 2010, 10(12): 4989–4993

    Article  ADS  Google Scholar 

  54. Goto H, Kanda A, Sato T, et al. Gate control of spin transport in multilayer graphene. Appl Phys Lett, 2008, 92(21): 212110

    Article  ADS  Google Scholar 

  55. Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B, 1996, 54(24): 17954–17961

    Article  ADS  Google Scholar 

  56. Wakabayashi K, Fujita M, Ajiki H, et al. Electronic and magnetic properties of nanographite ribbons. Phys Rev B, 1999, 59(12): 8271–8282

    Article  ADS  Google Scholar 

  57. Pisani L, Chan J A, Montanari B, et al. Electronic structure and magnetic properties of graphitic ribbons. Phys Rev B, 2007, 75(6): 064418

    Article  ADS  Google Scholar 

  58. Fujita M, Wakabayashi K, Nakada K, et al. Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn, 1996, 65(7): 1920–1923

    Article  ADS  Google Scholar 

  59. Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons. Phys Rev Lett, 2006, 97(21): 216803

    Article  ADS  Google Scholar 

  60. Son Y W, Cohen M L, Louie S G. Half-metallic graphene nanoribbons. Nature, 2006, 444(7117): 347–349

    Article  ADS  Google Scholar 

  61. Wimmer M, Adagideli İ, Berber S, et al. Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection. Phys Rev Lett, 2008, 100(17): 177207

    Article  ADS  Google Scholar 

  62. Muñoz-Rojas F, Fernández-Rossier J, Palacios J J. Giant magnetoresistance in ultrasmall graphene based devices. Phys Rev Lett, 2009, 102(13): 136810

    Article  ADS  Google Scholar 

  63. Kim W Y, Kim K S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat Nano, 2008, 3(7): 408–412

    Article  Google Scholar 

  64. Zhang Y T, Jiang H, Sun Q F, et al. Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons. Phys Rev B, 2010, 81(16): 165404

    Article  ADS  Google Scholar 

  65. Lakshmi S, Roche S, Cuniberti G. Spin-valve effect in zigzag graphene nanoribbons by defect engineering. Phys Rev B, 2009, 80(19): 193404

    Article  ADS  Google Scholar 

  66. Yang R, Zhang L C, Wang Y, et al. An anisotropic etching effect in the graphene basal plane. Adv Mater, 2010, 22(36): 4014–4019

    Article  Google Scholar 

  67. Shi Z W, Yang R, Zhang L C, et al. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv Mater, 2011, 23(27): 3061–3065

    Article  Google Scholar 

  68. Kosynkin D V, Higginbotham Amanda L, Sinitskii Alexander, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876

    Article  ADS  Google Scholar 

  69. Jiao L, Wang X R, Diankov G, et al. Facile synthesis of high-quality graphene nanoribbons. Nat Nano, 2010, 5(5): 321–325

    Article  Google Scholar 

  70. Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, et al. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett, 2009, 9(7): 2600–2604

    Article  ADS  Google Scholar 

  71. Jia X T, Hofmann M, Meunier V, et al. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons. Science, 2009, 323(5922): 1701–1705

    Article  ADS  Google Scholar 

  72. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

    Article  ADS  Google Scholar 

  73. Cassell A M, Raymakers J A, Kong J, et al. Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B, 1999, 103(31): 6484–6492

    Article  Google Scholar 

  74. Ren Z F, Huang Z P, Xu J W, et al. Synthesis of large arrays of wellaligned carbon nanotubes on glass. Science, 1998, 282(5391): 1105–1107

    Article  ADS  Google Scholar 

  75. Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274(5293): 1701–1703

    Article  ADS  Google Scholar 

  76. Maser W K, Munoz E, Benito A M, et al. Production of high-density single-walled nanotube material by a simple laser-ablation method. Chem Phys Lett, 1998, 292(4-6): 587–593

    Article  ADS  Google Scholar 

  77. Louie S. Electronic Properties, Junctions, and Defects of Carbon Nanotubes. Berlin, Heidelberg: Springer, 2001. 113–145

    Book  Google Scholar 

  78. Kim J R, So H M, Kim J J, et al. Spin-dependent transport properties in a single-walled carbon nanotube with mesoscopic Co contacts. Phys Rev B, 2002, 66(23): 233401

    Article  ADS  Google Scholar 

  79. Tombros N, van der Molen S J, van Wees B J. Separating spin and charge transport in single-wall carbon nanotubes. Phys Rev B, 2006, 73(23): 233403

    Article  ADS  Google Scholar 

  80. Yang H, Itkis Mikhail E, Moriya R, et al. Nonlocal spin transport in single-walled carbon nanotube networks. Phys Rev B, 2012, 85(5): 052401

    Article  ADS  Google Scholar 

  81. Jensen A, Hauptmann Jonas R, Nygård J, et al. Magnetoresistance in ferromagnetically contacted single-wall carbon nanotubes. Phys Rev B, 2005, 72(3): 035419

    Article  ADS  Google Scholar 

  82. Hueso L E, Pruneda Jose M, Ferrari V, et al. Transformation of spin information into large electrical signals using carbon nanotubes. Nature, 2007, 445(7126): 410–413

    Article  ADS  Google Scholar 

  83. Nagabhirava B, Bansal T, Sumanasekera G U, et al. Gated spin transport through an individual single wall carbon nanotube. Appl Phys Lett, 2006, 88(2): 023503

    Article  ADS  Google Scholar 

  84. Soulen R J, Byers J M, Osofsky M S, et al. Measuring the spin polarization of a metal with a superconducting point contact. Science, 1998, 282(5386): 85–88

    Article  ADS  Google Scholar 

  85. Meservey R, Tedrow P M. Spin-polarized electron-tunneling. Phys Rep-Rev Sect Phys Lett, 1994, 238(4): 173–243

    Google Scholar 

  86. Park J H, Vescovo E, Kim H J, et al. Direct evidence for a halfmetallic ferromagnet. Nature, 1998, 392(6678): 794–796

    Article  ADS  Google Scholar 

  87. Bowen M, Bibes M, Barthelemy A, et al. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl Phys Lett, 2003, 82(2): 233–235

    Article  ADS  Google Scholar 

  88. Semenov Y G, Kim K W, Iafrate G J. Electron spin relaxation in semiconducting carbon nanotubes: The role of hyperfine interaction. Phys Rev B, 2007, 75(4): 045429

    Article  ADS  Google Scholar 

  89. Semenov Y G, Zavada J M, Kim K W. Electron spin relaxation in carbon nanotubes. Phys Rev B, 2010, 82(15): 155449

    Article  ADS  Google Scholar 

  90. Borysenko K M, Semenov Y G, Kim K W, et al. Electron spin relaxation via flexural phonon modes in semiconducting carbon nanotubes. Phys Rev B, 2008, 77(20): 205402

    Article  ADS  Google Scholar 

  91. Man H T, Wever I J W, Morpurgo A F. Spin-dependent quantum interference in single-wall carbon nanotubes with ferromagnetic contacts. Phys Rev B, 2006, 73(24): 241401

    Article  ADS  Google Scholar 

  92. Sahoo S, Kontos T, Furer J, et al. Electric field control of spin transport. Nat Phys, 2005, 1(2): 99–102

    Article  Google Scholar 

  93. Schäpers T, Nitta J, Heersche H B, et al. Interference ferromagnet/ semiconductor/ferromagnet spin field-effect transistor. Phys Rev B, 2001, 64(12): 125314

    Article  ADS  Google Scholar 

  94. Gunnarsson G, Trbovic J, Schönenberger C. Large oscillating nonlocal voltage in multiterminal single-wall carbon nanotube devices. Phys Rev B, 2008, 77(20): 201405

    Article  ADS  Google Scholar 

  95. Makarovski A, Zhukov A, Liu J, et al. Four-probe measurements of carbon nanotubes with narrow metal contacts. Phys Rev B, 2007, 76(16): 161405

    Article  ADS  Google Scholar 

  96. Xiong Z H, Wu D, Vardeny Z V, et al. Giant magnetoresistance in organic spin-valves. Nature, 2004, 427(6977): 821–824

    Article  ADS  Google Scholar 

  97. Dediu V, Murgia M, Matacotta F C, et al. Room temperature spin polarized injection in organic semiconductor. Solid State Commun, 2002, 122(3–4): 181–184

    Article  ADS  Google Scholar 

  98. Majumdar S, Laiho R, Laukkanen P, et al. Application of regioregular polythiophene in spintronic devices: Effect of interface. Appl Phys Lett, 2006, 89(12): 122114

    Article  ADS  Google Scholar 

  99. Zare-Kolsaraki H, Micklitz H. Spin-dependent transport in films composed of Co clusters and fullerenes. Eur Phys J B-Condensed Matter Complex Syst, 2004, 40(1): 103–109

    Article  Google Scholar 

  100. Gobbi M, Golmar F, Llopis R, et al. Room-temperature spin transport in c-60-based spin valves. Adv Mater, 2011, 23(14): 1609–1613

    Article  Google Scholar 

  101. Awschalom D D, Flatte M E. Challenges for semiconductor spintronics. Nat Phys, 2007, 3(3): 153–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangYu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Zhang, G. Carbon-based spintronics. Sci. China Phys. Mech. Astron. 56, 207–221 (2013). https://doi.org/10.1007/s11433-012-4970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4970-8

Keywords

Navigation