Skip to main content
Log in

Numerical studies of penetration problems by an improved particle method

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A particle mapping transportation algorithm was proposed on the basis of the particle-in-cell method. The particles with rectangular influence domains were employed in the transportation algorithm to reduce the numerical fluctuations. Based on the error analysis in the process of particle motion computation, a prediction-correction algorithm was introduced to improve the computational accuracy. Furthermore, the performance of the particle mapping transportation method was evaluated by using the rotation, the slotted disk and the shear advection tests, and the results were compared with other interface reconstruction methods. Finally, the hemispherical projectile penetration into a steel target was numerically simulated. The results showed that the proposed method produced less numerical fluctuations and exhibited clear material interfaces, which indicated that it is accurate and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang C, Ma T B, Lu J. Influence of obstacle disturbance in a duct on explosion characteristics of coal gas. Sci China-Phys Mech Astron, 2010, 53: 269–278

    Article  ADS  Google Scholar 

  2. Zhang Y J, Liu Y D, Zhang Z H, et al. Computation on pipe dynamic response induced by deflagration of H2 and air mixture. Sci China-Phys Mech Astron, 2010, 53: 199–208

    Article  ADS  MATH  Google Scholar 

  3. Ning J G, Song W D, Yang G T. Failure analysis of plastic spherical shells impacted by a projectile. Int J Impact Eng, 2006, 32: 1464–1484

    Article  Google Scholar 

  4. Song W D, Ning J G, Wang J. Normal impact of truncated oval-nosed projectiles on stiffened plates. Int J Impact Eng, 2008, 35: 1022–1034

    Article  Google Scholar 

  5. Wang Z H, Zhang Y F, Ren H L, et al. A study on compressive shock wave propagation in metallic foams. Sci China-Phys Mech Astron, 2010, 53: 279–287

    Article  ADS  Google Scholar 

  6. Wu K T, Hao L, Wang C, et al. Level set interface treatment and its application in Euler method. Sci China-Phys Mech Astron, 2010, 53: 227–236

    Article  ADS  Google Scholar 

  7. Liu H F, Liu H Y, Song W D. Fracture characteristics of concrete subjected to impact loading. Sci China-Phys Mech Astron, 2010, 53: 253–261

    Article  ADS  Google Scholar 

  8. Ren H L, Shu X F, Li Ping. Numerical and experimental investigation of the fracture behavior of shock loaded alumina. Sci China-Phys Mech Astron, 2010, 53: 244–252

    ADS  Google Scholar 

  9. Wang G, Wang J T, Liu K X. New numerical algorithms in SUPER CE/SE and their applications in explosion mechanics. Sci China-Phys Mech Astron, 2010, 53: 237–243

    Article  ADS  Google Scholar 

  10. Ning J G, Wang C, Lu J. Explosion characteristics of coal gas under various initial temperatures and pressures. Shock Waves, 2006, 15: 461–472

    Article  ADS  Google Scholar 

  11. He C J, Zhou H B, Hang Y H. A numerical study on Rayleigh-Taylor instability of aluminum plates driven by detonation. Sci China-Phys Mech Astron, 2010, 53: 195–198

    Article  ADS  Google Scholar 

  12. Li P, Bai J S, Wang T, et al. Large eddy simulation of a shocked gas cylinder instability induced turbulence. Sci China-Phys Mech Astron, 2010, 53: 262–268

    ADS  Google Scholar 

  13. Wu Y Q, Huang F L. A thermal-mechanical constitutive model for b-HMX single crystal and cohesive interface under dynamic high pressure loading. Sci China-Phys Mech Astron, 2010, 53: 218–226

    Article  ADS  Google Scholar 

  14. Liu H F, Ning J G. Mechanical behavior of reinforced concrete subjected to impact loading. Mech Mater, 2009, 41: 1298–1308

    Article  Google Scholar 

  15. Amsden A A. The particle-in-cell method for the calculations of the dynamics of compressible fluids. Los Alamos Scientific Laboratory Report LA-3466. 1966

  16. McKee S. The MAC method. Comput Fluids, 2008, 37: 907–930

    Article  MathSciNet  MATH  Google Scholar 

  17. Yun S R, Tu H J, Liang D S, et al. Computational Method on Explosion Mechanics. Beijing: Beijing Institute of Technology Press, 1995. 121-126

  18. Nishiguchi A, Yabe T. Second-order fluid particle scheme. J Comput Phys, 1983, 52: 390–413

    Article  ADS  MATH  Google Scholar 

  19. Konstantinov A B, Orszag S A. Extended lagrangian particle-in-cell code for inhomogeneous compressible flows. J Sci Comput, 1995, 10: 191–231

    Article  MathSciNet  MATH  Google Scholar 

  20. Brackbill J U, Kothe D B, Ruppel H M. FLIP: A low-dissipation, particle-in-cell method for fluid flow. Comput Phys Commun, 1988, 48: 25–38

    Article  ADS  Google Scholar 

  21. Bardenhagen S G, Brachbill J U, Sulsky D. The material-point method for granular materials. Comput Meth Appl Mech Eng, 2000, 187: 529–541

    Article  MATH  Google Scholar 

  22. Liu G R, Liu M B. Smoothed Particle Hydrodynamics: A Meshfree particle Method. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003

    Book  MATH  Google Scholar 

  23. Ma T B, Wang J, Ning J G. A hybrid VOF and PIC multi-material interface treatment method and its application in the penetration. Sci China-Phys Mech Astron, 2010, 53: 209–217

    Article  ADS  Google Scholar 

  24. Harvie D J E, Fletcher D F. A new volume of fluid advection algorithm: The stream scheme. J Comput Phys, 2000, 162: 1–32

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Harvie D J E, Fletcher D F. A new volume of fluid advection algorithm: The defined donating region scheme. Int J Numer Meth Fl, 2001, 35: 151–172

    Article  MathSciNet  MATH  Google Scholar 

  26. López J. A volume of fluid method based on multidimensional ad vection and spline interface reconstruction. J Comput Phys, 2004, 195: 718–742

    Article  ADS  MATH  Google Scholar 

  27. Rider W J, Kothe D B. Reconstructing volume tracking. J Comput Phys, 1998, 141: 112–152

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Scardovelli R, Zaleski S. Interface reconstruction with least-square fit and split Eulerian-Lagragian advection. Int J Numer Meth Fl, 2003, 41: 251–274

    Article  MATH  Google Scholar 

  29. Rudman M. Volume-tracking methods for interfacial flow calculations. Int J Numer Meth Fl, 1997, 24: 671–691

    Article  MathSciNet  MATH  Google Scholar 

  30. Ma T B, Wang C, Ning J G. Multi-material Eulerian formulations and hydrocode for the simulation of explosions. CMES-Comp Model Eng Sci, 2008, 33: 155–178

    MathSciNet  MATH  Google Scholar 

  31. Ning, J G, Chen L W. Fuzzy interface treatment in Eulerian method. Sci China Ser E-Technol Sci, 2004, 47: 550–568

    Article  Google Scholar 

  32. Børvik T, Langseth M, Hopperstad O S, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses Part II: Numerical simulations. Int J Impact Eng, 2002, 27: 37–64

    Article  Google Scholar 

  33. Børvik T, Langseth M, Hopperstad O S, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses Part I: Experimental study. Int J Impact Eng, 2002, 27: 19–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianBao Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, H., Ma, T. & Yao, X. Numerical studies of penetration problems by an improved particle method. Sci. China Phys. Mech. Astron. 55, 2273–2283 (2012). https://doi.org/10.1007/s11433-012-4948-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4948-6

Keywords

Navigation