Skip to main content
Log in

Structure and property of metal melt IV—Evolution of titanium melt residual bond structure and its effect on dynamic viscosity

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Based on the concept of melt residual bonds, a calculating model quantitatively describing the evolution of the residual bond structure of titanium melt at the melting point or in a certain range above the melting point was established; i.e., both the size dS and the bond number n of the residual bond structure decrease monotonously with the increase of temperature. By mathematical deduction, a linear relationship between the residual bond structure size d S and the dynamic viscosity η of Titanium melt was revealed, i.e., η= 0.876 + 0.471·d S, which is of great significance to the investigation of the relationship between the melt microstructure and the macroscopic properties of metals with high melting temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moiseyev V V. Titanium Alloy Russian Aircraft and Aerospace Applications. New York: CRC Press, 2006

    Google Scholar 

  2. Mi G B, Li P J, He L J, et al. EET research on melt structural information of magnesium Alloy. Rare Metal Mater Eng, 2010, 39(11): 1881–1887

    Article  Google Scholar 

  3. Mi G B, Li P J, He L J. Structure and property of metal melt I. The number of residual bonds after solid-liquid phase changes. Sci China-Phys Mech Astron, 2010, 53(9): 1571–1577

    Google Scholar 

  4. Mi G B, Li P J, He L J. Structure and property of metal melt II. Evolution of atomic clusters in the not high temperature range above liquidus. Sci China-Phys Mech Astron, 2010, 53(10): 1823–1830

    Article  ADS  Google Scholar 

  5. Khrushchev B I. Nature of the bond and change in the structure of metals during melting. Strukturnoi Khimii, 1971, 12(6): 958–963

    Google Scholar 

  6. Данилов В И. Строение и кристаллиэация жидкости: Иэбранные статьи. Киев: АН УССР, 1956: 2–4

    Google Scholar 

  7. Бухаренко В В, Чень С Щ, Иляинский А Г, и др. Рентгеновское исследование структуры жидких сплавов системы индий-галлий. Металлофиэика, 1991, 19(10): 92

    Google Scholar 

  8. Лящко А С, Полтавцев У Г. Рентгенографическое исследование жидкого галлия в щироком интервале температуре. Украинский Фиэический журнал, 1968, 13(9): 1579–1583

    Google Scholar 

  9. Кпименков Е А, Гельб П В, Баум Б А, и др. О структуре ближнего порядка в жидком желеэе, кобальте и никеле. Докл. АН СССР, 1976, 230(1): 71–73

    Google Scholar 

  10. Ерщов Г С, Бычнов У Б. Высокопрочные алюминиевые сплавы на основе вторичного сырья. Москва: Металлургия, 1979: 5–60

  11. Каэимиров В П, Роик А С, Самсонников А В, и др. Характер упорядочения атомов в расплаве и поверхностные свойства систем с интерметаллическими соединениями. Сверхтвердые материалы, 2009, 4: 40–54

    Google Scholar 

  12. Rao B K, Jena P. Evolution of the electronic structure and properties of neutral and charged aluminum clusters: A comprehensive analysis. J Chem Phys, 1999, 111(5): 1890–1904

    Article  ADS  Google Scholar 

  13. Arnold G L, Anbar A D, Barling J, et al. Formation of Al13I: Evidence for the superhalogen character of Al13. Science, 2004, 304: 84–87

    Article  ADS  Google Scholar 

  14. Chacko S, Deshpande M, Kanhere D G. Structural and electronic properties of aluminium-based binary clusters. Phys Rev B, 2001, 64: 155409

    Article  ADS  Google Scholar 

  15. Medel V M, Reveles J U, Khanna S N, et al. Hund’s rule in superatoms with transition metal impurities. PNAS Early Ed, 2011: 1–5

  16. Woodward W H, Eyet N, Shuman N S, et al. Aluminum Cluster anion reactivity with singlet oxygen: Evidence of Al9-stability. J Phys Chem C, 2011, 115: 9903–9908

    Article  Google Scholar 

  17. Milligan J, Heard D W, Brochu M. Formation of nanostructured weldments in the Al-Si system using electrospark welding. Appl Surf Sci, 2010, 256: 4009–4016

    Article  ADS  Google Scholar 

  18. Granqvist C G, Buhrman R A. Ultrafine metal particles. J Appl Phys, 1976, 47(5): 2200–2219

    Article  ADS  Google Scholar 

  19. Zhang R L. Empirical Electron Theory of Solids and Molecules (in Chinese). Changchun: Jilin Science and Technology Press, 1993. 66–67

    Google Scholar 

  20. Dean J A. Lange’s Handbook of Chemistry. 15th ed. New York: McGraw-Hill, 1999. 6.124–6.142

    Google Scholar 

  21. Iida T, Rodarick I L. The Properties of Liquid Metal. Oxford: Clavendon Press, 1993. 148–153

    Google Scholar 

  22. Paradis P F, Ishikawa T, Yoda S. Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace. Int J Thermophys, 2002, 23(3): 825–842

    Article  Google Scholar 

  23. Ъвидковский Е Г, Горяга Г И. Метод иэмерения вяэкости металлических расплавов: влияние примеси на вяэкость. Вестн. МГУ, 1953, 9: 63

    Google Scholar 

  24. Sklyarchuk V, Plevachuk Y, Yakymovych A, et al. Structure sensitive properties of liquid Al-Si alloys. Int J Thermophys, 2009, 30: 1400–1410

    Article  Google Scholar 

  25. Mi G B, Li P J, Okhapkin A V, et al. Relationship between liquid structure and property (i). Kinematic viscosity of Mg melt and its relationship with the microstructure (in Chinese). Acta Phys Sin, 2011, 60(4): 046601

    Google Scholar 

  26. Mi G B, Li P J, Okhapkin A V, et al. Relationship between liquid structure and property (ii). Kinematic viscosity of Mg-9Al melt and its relationship with the microstructure (in Chinese). Acta Phys Sin, 2011, 60(5): 056601

    Google Scholar 

  27. Mi G B, Li P J, Popel P S, et al. Structure and property of metal melt III. Relationship between kinematic viscosity and size of atomic clusters. Sci China-Phys Mech Astron, 2010, 53(11): 2054–2058

    Article  ADS  Google Scholar 

  28. Qi J G. Research on Electric Pulse Treatment and Liquid Structure of Aluminum Melt (in Chinese). Beijing: University of Science and Technology Beijing, 2006. 39–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangBao Mi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, G., Cao, J., Huang, X. et al. Structure and property of metal melt IV—Evolution of titanium melt residual bond structure and its effect on dynamic viscosity. Sci. China Phys. Mech. Astron. 55, 1371–1375 (2012). https://doi.org/10.1007/s11433-012-4804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4804-8

Keywords

Navigation