Skip to main content
Log in

Surface enhanced fluorescence by porous alumina with nanohole arrays

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The fluorescence enhancement of Rhodamine 6G (Rh6G) fluorophore in the close vicinity of porous alumina film with ordered nanohole arrays is investigated. Experimental observations show that the nonmetallic substrate with hole arrays enhances the fluorescence intensity. By comparing the fluorescence emissions that are excited with 325 nm and 532 nm, better fluorescence enhancement is obtained with excitation at a shorter wavelength. The study suggests that higher fluorescence excitation efficiency due to the energy transfer from oxygen vacancies to Rh6G fluorophore molecules is responsible for better fluorescence enhancement. The contribution of the scattering of nanohole arrays to the fluorescence enhancement is also proposed based on the intensity increase and reduced lifetime when the energy transfer from oxygen vacancy is absent. The result of the current study is useful for developing non-metal substrates in the study of spectroscopic enhancement, and is expected to advance the applications of porous alumina to microanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geddes C D, Lakowicz J R. Metal-enhanced fluorescence. J Fluoresc, 2002, 12(2): 121–129

    Article  Google Scholar 

  2. Fort E, Gresillon S. Surface enhanced fluorescence. J Phys D-Appl Phys, 2008, 41(2): 013001

    Article  ADS  Google Scholar 

  3. Aslan K, Leonenko Z, Lakowicz J R, et al. Annealed silver island films for metal-enhanced fluorescence. J Fluoresc, 2005, 15(5): 643–654

    Article  Google Scholar 

  4. Zhang Y X, Aslan K, Michael J R, et al. Metal-enhanced fluorescence: Surface plasmons can radiate a fluorophore’s structured emission. Appl Phys Lett, 2007, 90: 053107

    Article  ADS  Google Scholar 

  5. Galloway C M, Etchegoin P G, Le Ru E C. Ultrafast nonradiative decay rates on metallic surfaces by comparing surface-enhanced raman and fluorescence signals of single molecules. Phys Rev Lett, 2009, 103: 063003

    Article  ADS  Google Scholar 

  6. Fu C C, Ossato G, Long M, et al. Bimetallic nanopetals for thousand-fold fluorescence enhancements. Appl Phys Lett, 2010, 97: 203101

    Article  ADS  Google Scholar 

  7. Lakowicz J R, Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem, 2004, 324(2): 153–169

    Article  Google Scholar 

  8. Viger M L, Brouard D, Boudreau D. Plasmon-enhanced resonance energy transfer from a conjugated polymer to fluorescent multilayer core-shell nanoparticles: A photophysical study. J Phys Chem C, 2011, 115(7): 2974–2981

    Article  Google Scholar 

  9. Lakowicz J R. Radiative decay engineering: Biophysical and biomedical applications. Anal Biochem, 2001, 298: 1–24

    Article  Google Scholar 

  10. Zheng H R, Xu L M, Zhang Z L, et al. Fluorescence enhancement of acridine orange in a water solution by Au nanoparticles. Sci China-Phys Mech Astron, 2010, 53(10): 1799–1804

    Article  ADS  Google Scholar 

  11. Aslan K, Malyn S N, Geddes C D. Angular-dependent metal enhanced fluorescence from silver island films. J Chem Phys Lett, 2008, 453: 222–228

    Article  ADS  Google Scholar 

  12. Zhang Y X, Aslan K, Michael J R. Previte, previte, metal-enhanced fluorescence from copper substrates. Appl Phys Lett, 2007, 90: 173116

    Article  ADS  Google Scholar 

  13. Liu G N, Zheng H R, Liu M C, et al. Surface-enhanced fluorescence of Rhodamine 6G on the assembled silver nanostructures. J Nanosci Nanotechnol, 2011, 11(11): 9523–9527

    Article  Google Scholar 

  14. Zhang Z L, Zheng H R, Liu M C, et al. Surface enhanced fluorescence of rh6g with gold nanohole arrays. J Nanosci Nanotechnol, 2011, 11(11): 9803–9807

    Article  Google Scholar 

  15. Alexandre G B, Shing C K, Matthew G M, et al. Enhanced fluorescence from arrays of nanoholes in a gold film. J Am Chem Soc, 2005, 127: 14936–14941

    Article  Google Scholar 

  16. Ray K, Chowdhury M H, Lakowicz J R. Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. Anal Chem, 2007, 79(17): 6480–6487

    Article  Google Scholar 

  17. Zhang Z L, Zheng H R, Xu L M, et al. Fluorescence enhancement of mechanically polished metallic surfaces to Acridine orange in a sandwiched configuration (in Chinese). Sci Sin-Phys Mech Astron, 2010, 40(3): 280–286

    Google Scholar 

  18. Johansson P, Xu H X, Käll M. Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys Rev B, 2005, 72: 035427

    Article  ADS  Google Scholar 

  19. Huang G S, Wu X L, Mei Y F, et al. Strong blue emission from anodic alumina membranes with ordered nanopore array. J Appl Phys, 2003, 93(1): 582–585

    Article  ADS  Google Scholar 

  20. Mehmood M, Rauf A, Rasheed M A, et al. Preparation of transparent anodic through-thickness anodic alumina with ordered nanochannels by oxidation of aluminum sheet. Mater Chem Phys, 2007, 104(2–3): 306–311

    Article  Google Scholar 

  21. Kopp O, Lelonek M, Knoll M. The influence of pore diameter on bifurcation and termination of individual pores in nanoporous alumina. J Phys Chem C, 2011, 115(16): 7993–7996

    Article  Google Scholar 

  22. Xiao Z L, Han C Y, Welp U, et al. Fabrication of alumina nanotubes and nanowires by etching porous alumina membranes. Nano Lett, 2002, 2(11): 1293–1297

    Article  ADS  Google Scholar 

  23. Wang Z Y, Chen Z J, Lan Z H, et al. Enhancement of Alq3 fluorescence by nanotextured silver films deposited on porous alumina substrates. Appl Phys Lett, 2007, 90: 151119

    Article  ADS  Google Scholar 

  24. Friedman A L, Chun H, Jung Y J, et al. Possible room-temperature ferromagnetism in hydrogenated carbon nanotubes. Phys Rev B, 2010, 81: 115461

    Article  ADS  Google Scholar 

  25. Tsai H Y, Liu H C, Chen J H, et al. Low cost fabrication of diamond nano-tips on porous anodic alumina by hot filament chemical vapor deposition and the field emission effects. Nanotechnology, 2011, 22(23): 235301

    Article  ADS  Google Scholar 

  26. Jia R P, Shen Y, Luo H Q, et al. Enhanced photoluminescence properties of morin and trypsin. Solid State Commun, 2004, 130(6): 367–372

    Article  ADS  Google Scholar 

  27. Gaponenko N V, Molchan I S, Lutich A A, et al. Enhanced Luminescence of europium in porous anodic alumina films. Solid State Phenom, 2004, 97(98): 251–258

    Article  Google Scholar 

  28. Du Y, Cai W L, Mo C M, et al. Preparation and photoluminescence of alumina membranes with ordered pore array. Appl Phys Lett, 1999, 74(20): 2951–2953

    Article  ADS  Google Scholar 

  29. Forster T. Transfer mechanisms of electronic excitation. Discuss Faraday Soc, 1959, 27: 7–17

    Article  Google Scholar 

  30. Peelen J G J, Metselaar R. Light scattering by pores in polycrystalline materials: Transmission properties of alumina. J Appl Phys, 1974, 45: 216–220

    Article  ADS  Google Scholar 

  31. Lakowicz J R. Principles of Fluorescence Spectroscopy. 2nd ed. Berlin: Springer-Verlag, 1999. 9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HaiRong Zheng or HongXing Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Zheng, H., Dong, J. et al. Surface enhanced fluorescence by porous alumina with nanohole arrays. Sci. China Phys. Mech. Astron. 55, 767–771 (2012). https://doi.org/10.1007/s11433-012-4681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4681-1

Keywords

Navigation