Skip to main content
Log in

Stability and diffusion properties of self-interstitial atoms in tungsten: a first-principles investigation

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Employing a first-principles method based on the density function theory, we systematically investigate the structures, stability and diffusion of self-interstitial atoms (SIAs) in tungsten (W). The〈111〉 dumbbell is shown to be the most stable SIA defect configuration with the formation energy of ∼9.43 eV. The on-site rotation modes can be described by a quite soft floating mechanism and a down-hill “drift” diffusion process from 〈110〉 dumbbell to 〈111〉 dumbbell and from 〈001〉 dumbbell to 〈¹10〉 dumbbell, respectively. Among different SIA configurations jumping to near neighboring site, the 〈111〉 dumbbell is more preferable to migrate directly to first-nearest-neighboring site with a much lower energy barrier of 0.004 eV. These results provide a useful reference for W as a candidate plasma facing material in fusion Tokamak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu G, Kaxiras E. Can vacancies lubricate dislocation motion in aluminum? Phys Rev Lett, 2002, 89: 105501

    Article  ADS  Google Scholar 

  2. Lu G, Kaxiras E. Hydrogen embrittlement of aluminum: The crucial role of vacancies. Phys Rev Lett, 2005, 94: 155501

    Article  ADS  Google Scholar 

  3. Gavini V, Bhattacharya K, Ortiz M. Vacancy clustering and prismatic dislocation loop formation in aluminum. Phys Rev B, 2007, 76: 180101

    Article  ADS  Google Scholar 

  4. Zhou H B, Liu Y L, Jin S, et al. Investigating behaviours of hydrogen in a tungsten grain boundary by first principles: From dissolution and diffusion to a trapping mechanism. Nucl Fusion, 2010, 50: 025016

    Article  ADS  Google Scholar 

  5. Zhou H B, Liu Y L, Jin S, et al. Towards suppressing H blistering by investigating the physical origin of the H-He interaction in W. Nucl Fusion, 2010, 50: 115010

    Article  ADS  Google Scholar 

  6. Liu Y L, Zhang Y, Zhou H B, et al. Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys Rev B, 2009, 79: 172103

    Article  ADS  Google Scholar 

  7. Ehrhart P, Jung P, Schults H, et al. Atomic Defects in Metals. Landolt-Bornstein New Series. Berlin: Springer-Verlag, 1991

  8. Evans J H. Simulations of the effects of 1-d interstitial diffusion on void lattice formation during irradiation. Philos Mag A, 2005, 85: 1177–1190

    Article  ADS  Google Scholar 

  9. Dausinger F, Schults H. Long-range migration of self-interstitial atoms in tungsten. Phys Rev Lett, 1975, 35: 1773–1775

    Article  ADS  Google Scholar 

  10. Tanaka S, Fuss J, Kugler H, et al. The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation. Radiat Eff, 1983, 79: 87–122

    Article  Google Scholar 

  11. Israeloff N E, Weissman M B, Garfunkel G A. 1/f Noise in Cr Films from spin-density-wave polarization rotation. Phys Rev Lett, 1988, 60: 152–155

    Article  ADS  Google Scholar 

  12. Harder J M, Bacon D J. Point-defect and stacking-fault properties in body-centered-cubic metals with N-body interatomic potentials. Philos Mag A, 1986, 54: 651–661

    Article  ADS  Google Scholar 

  13. Adams J B, Foiles S M. Development of an embedded-atom potential for a bcc metal: Vanadium. Phys Rev B, 1990, 41: 3316–3328

    Article  ADS  Google Scholar 

  14. Wirth B D, Odette G R, Maroudas D, et al. Energetics of formation and migration of self-interstitials and self-interstitial clusters in α-iron. J Nucl Mater, 1997, 244: 185–194

    Article  ADS  Google Scholar 

  15. Marian J, Wirth B D, Caro A, et al. Dynamics of self-interstitial cluster migration in pure α-Fe and Fe-Cu alloys. Phys Rev B, 2002, 65: 144102

    Article  ADS  Google Scholar 

  16. Han S, Zepeda-Ruiz L A, Ackland G J, et al. Self-interstitials in V and Mo. Phys Rev B, 2002, 66: 220101

    Article  ADS  Google Scholar 

  17. Fu C C, Willaime F, Ordejon P. Stability and mobility of mono- and Di-interstitials in α-Fe. Phys Rev Lett, 2004, 92: 175503

    Article  ADS  Google Scholar 

  18. Nguyen-Manh D, Horsfield A P, Dudarev S L. Self-interstitial atom defects in bcc transition metals: Group-specific trends. Phys Rev B, 2006, 73: 020101

    Article  ADS  Google Scholar 

  19. Derlet P M, Nguyen-Manh D, Dudarev S L. Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals. Phys Rev B, 2007, 76: 054107

    Article  ADS  Google Scholar 

  20. Becquart C S, Domain C. Ab initio calculations about intrinsic point defects and He in W. Nucl Instrum Methods Phys Res Sect B, 2007, 255: 23–26

    Article  ADS  Google Scholar 

  21. Ackland G J, Thetford R. An improved N-body semi-empirical model for body-centred cubic transition metals. Philos Mag A, 1987, 56: 15–30

    Article  ADS  Google Scholar 

  22. Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys Rev B, 1993, 47: 558–561

    Article  ADS  Google Scholar 

  23. Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  ADS  Google Scholar 

  24. Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244–13249

    Article  ADS  Google Scholar 

  25. Blochl P E. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  ADS  Google Scholar 

  26. Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  MathSciNet  ADS  Google Scholar 

  27. Kittel C. Introduction to Solid State Physics. 7th ed. New York: Wiley, 1996

    Google Scholar 

  28. Schilling W. Self-interstitial atoms in metals. J Nucl Mater, 1978, 69–70: 465–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangHong Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Liu, Y., Zhou, H. et al. Stability and diffusion properties of self-interstitial atoms in tungsten: a first-principles investigation. Sci. China Phys. Mech. Astron. 55, 614–618 (2012). https://doi.org/10.1007/s11433-012-4679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4679-8

Keyowrds

Navigation