Skip to main content
Log in

Thermodynamics of the Reissner-Nordström-de Sitter black hole

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Considering the relationship between the black hole horizon and the cosmological horizon, the thermodynamic property of the charged de Sitter spacetime is discussed. The effective temperature and energy are obtained. The result shows that the upper limit of the energy in the charged de Sitter spacetime is just the energy in the pure de Sitter spacetime. The thermal capacity of the charged de Sitter spacetime is positive, thus satisfying the thermal stability condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai R G. Dark energy and de Sitter spacetime. Physics, 2005, 34: 555–564

    Google Scholar 

  2. Zhang L C, Li H F, Zhao R. The thermodynamics property of Schwarzchild-de Sitter black hole (in Chinese). Acta Phys Sin, 2010, 59: 8994–8998

    Google Scholar 

  3. Cai R G. Cardy-Verlinde formula and thermodynamics of black holes in de Sitter spaces. Nucl Phys B, 2002, 628: 375–386

    Article  MATH  ADS  Google Scholar 

  4. Zhao R, Zhang L C, Li H F. Hawking radiation of a Reissner-Nordströmde Sitter black hole. Gen Relat Grav, 2010, 42: 975–983

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Zhao R, Zhang L C, Li H F, et al. Hawking radiation of a highdimensional rotating black hole. Eur Phys J C, 2010, 65: 289–293

    Article  MathSciNet  MATH  Google Scholar 

  6. Urano M, Tomimatsu A. The mechanical first law of black hole spacetimes with a cosmological constant and its application to the Schwarzschild-de Sitter spacetime. Class Quantum Gravity, 2009, 26: 105010

    Article  MathSciNet  ADS  Google Scholar 

  7. Balasubramanian V, de Boer J, Minic D. Mass, entropy, and holography in asymptotically de Sitter spaces. Phys Rev D, 2002, 65: 123508

    Article  MathSciNet  ADS  Google Scholar 

  8. Cai R G, Myung Y S, Zhang Y Z. Check of the mass bound conjecture in de Sitter space. Phys Rev D, 2002, 65: 084019

    Article  MathSciNet  ADS  Google Scholar 

  9. Wald R M. “Nernst theorem” and black hole thermodynamics. Phys Rev D, 1997, 56: 6467–6474

    Article  MathSciNet  ADS  Google Scholar 

  10. Zaslavskii O B. Extreme state of a charged black hole in a grand canonical ensemble. Phys Rev Lett, 1996, 76: 2211–2213

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Zaslavskii O B. Geometry of nonextreme black holes near the extreme state. Phys Rev D, 1997, 56: 2188–2191

    Article  MathSciNet  ADS  Google Scholar 

  12. Zaslavskii O B. Dilaton black holes in the grand canonical ensemble near the extreme state. Phys Rev D, 1997, 56: 6695–6697

    Article  MathSciNet  ADS  Google Scholar 

  13. Zhao R, Zhang L C, Wu Y Q. The Nernst theorem and the entropy of the Reissner-Nordström black hole. Gen Relativ Gravit, 2000, 32: 1639–1646

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhai Z G, Liu W B. Nernst theorem and Hawking radiation from a Reissner-Nordström black hole. Astrophys Space Sci, 2010, 3325: 63–67

    Article  MATH  ADS  Google Scholar 

  15. Wei Y H. Understanding first law of thermodynamics of black holes. Phys Lett B, 2009, 672: 98–100

    Article  MathSciNet  ADS  Google Scholar 

  16. Dymnikova I, Korpusik M. Regular black hole remnants in de Sitter space. Phys Lett B, 2010, 685: 12–18

    Article  ADS  Google Scholar 

  17. Myung Y S. Phase transitions for the topological de Sitter spaces and Schwarzschild-de Sitter black hole. Phys Lett B, 2007, 645: 369–376

    Article  MathSciNet  ADS  Google Scholar 

  18. Farmany A, Dehghani M, Setare M R, et al. Tunneling black hole radiation, generalized uncertainty principle and de Sitter-Schwarzschild black hole. Phys Lett B, 2009, 682: 114–117

    Article  MathSciNet  ADS  Google Scholar 

  19. Myung Y S. Thermodynamics of the Schwarzschild-de Sitter black hole: Thermal stability of the Nariai black hole. Phys Rev D, 2008, 77: 104007

    Article  MathSciNet  ADS  Google Scholar 

  20. Medved A J M. Radiation via tunneling from a de Sitter cosmological horizon. Phys Rev D, 2002, 66: 124009

    Article  MathSciNet  ADS  Google Scholar 

  21. Setare M R, Altaie M B. The Cardy-Verlinde formula and entropy of topological Kerr-Newman black holes in de Sitter spaces. Eur Phys J C, 2003, 30: 273–278

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Sekiwa Y. Thermodynamics of de Sitter black holes: Thermal cosmological constant. Phys Rev D, 2006, 73: 084009

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Li, H. & Zhao, R. Thermodynamics of the Reissner-Nordström-de Sitter black hole. Sci. China Phys. Mech. Astron. 54, 1384–1387 (2011). https://doi.org/10.1007/s11433-011-4381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4381-2

Keywords

Navigation