Skip to main content
Log in

Phase-field modeling of void evolution and swelling in materials under irradiation

  • Research Paper
  • Multiscale Modeling & Simulation of Materials
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume change in irradiated materials. Important material processes, including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution, have been taken into account in this model. The thermodynamic and kinetic properties, such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials, are expressed as a function of temperature and/or defect concentrations in a general manner. The model allows for parametric studies of critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that void swelling displays a quasi-bell shape distribution with temperature often observed in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garner F A, Heinisch H L, Simons R L, et al. Implications of neutron-spectrum and flux differences on fission-fusion correlations at high neutron fluence. Radiat Eff Defect S, 1990, 113: 229–255

    Article  Google Scholar 

  2. Kumar A, Garner F A. Saturation of proton-induced swelling in Aisi-316. J Nucl Mater, 1983, 117: 234–238

    Article  ADS  Google Scholar 

  3. Laidler J J, Mastel B. Nucleation of voids in irradiated stainless-steel. Nature, 1972, 239: 97–98

    Article  ADS  Google Scholar 

  4. Straalsund J L, Powell R W, Chin B A. An overview of neutron-irradiation effects in lmfbr materials. J Nucl Mater, 1982, 108: 299–305

    Article  ADS  Google Scholar 

  5. Marwick A D. Segregation in irradiated alloys-inverse Kirkendall effect and effect of constitution on void swelling. J Phys F-Met Phys, 1978, 8: 1849–1861

    Article  ADS  Google Scholar 

  6. Little E A, Stow D A. Void-swelling in irons and ferritic steels. 2. Experimental survey of materials irradiated in a fast-reactor. J Nucl Mater, 1979, 87: 25–39

    Article  ADS  Google Scholar 

  7. Little E A. Void-swelling in irons and ferritic steels. 1. Mechanisms of swelling suppression. J Nucl Mater, 1979, 87: 11–24

    Article  ADS  Google Scholar 

  8. Lam N Q, Okamoto P R, Wiedersich H. Effects of solute segregation and precipitation on void swelling in irradiated alloys. J Nucl Mater, 1978, 74: 101–113

    Article  ADS  Google Scholar 

  9. Little E A. Microstructural evolution in irradiated ferritic-martensitic steels-transitions to high-dose behavior. J Nucl Mater, 1993, 206: 324–334

    Article  ADS  Google Scholar 

  10. Porollo S I, Vorobjev A N, Konobeev Y V, et al. Swelling and void-induced embrittlement of austenitic stainless steel irradiated to 73–82 dPa at 335–365 degrees C. J Nucl Mater, 1998, 263: 1613–1617

    Article  Google Scholar 

  11. Vorobjev A N, Budylkin N I, Mironova E G, et al. Irradiation creep and stress-enhanced swelling of Fe-16Cr-15Ni-Nb austenitic stainless steel in BN-350. J Nucl Mater, 1998, 263: 1618–1622

    Article  Google Scholar 

  12. Surh M P, Sturgeon J B, Wolfer W G. Vacancy cluster evolution and swelling in irradiated 316 stainless steel. J Nucl Mater, 2004, 328: 107–114

    Article  ADS  Google Scholar 

  13. Brailsfo A D, Bullough R. Rate theory of swelling due to void growth in irradiated metals. J Nucl Mater, 1972, 44: 121–138

    Article  ADS  Google Scholar 

  14. Dollins C C, Ocken H. Resolution effects and fission gas swelling in UO2. J Nucl Mater, 1972, 45: 150–162

    Article  ADS  Google Scholar 

  15. Singh B N, Golubov S I, Trinkaus H, et al. Aspects of microstructure evolution under cascade damage conditions. J Nucl Mater, 1997, 251: 107–122

    Article  ADS  Google Scholar 

  16. Trinkaus H, Singh B N, Golubov S I. Progress in modelling the microstructural evolution in metals under cascade damage conditions. J Nucl Mater, 2000, 283: 89–98

    Article  ADS  Google Scholar 

  17. Surh M P, Sturgeon J B, Wolfer W G. Master equation and Fokker-Planck methods for void nucleation and growth in irradiation swelling. J Nucl Mater, 2004, 325: 44–52

    Article  ADS  Google Scholar 

  18. Evans J H. Simulations of the effects of 2-D interstitial diffusion on void lattice formation during irradiation. Philos Mag, 2006, 86: 173–188

    Article  ADS  Google Scholar 

  19. Cawthorn C, Fulton E J. Voids in irradiated stainless steel. Nature, 1967, 216: 575–576

    Article  ADS  Google Scholar 

  20. Stoller R E, Odette G R, Wirth B D. Primary damage formation in bcc iron. J Nucl Mater, 1997, 251: 49–60

    Article  ADS  Google Scholar 

  21. Bacon D J, Gao F, Osetsky Y N. Atomic-scale computer simulation of primary irradiation damage effects in metals. J Comput-Aided Mater, 1999, 6: 225–237

    Article  Google Scholar 

  22. Bacon D J, Gao F, Osetsky Y N. The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations. J Nucl Mater, 2000, 276: 1–12

    Article  ADS  Google Scholar 

  23. Osetsky Y N, Bacon D J, Singh B N. Statistical analysis of cluster production efficiency in MD simulations of cascades in copper. J Nucl Mater, 2002, 307: 866–870

    Article  ADS  Google Scholar 

  24. Osetsky Y N, Bacon D J, Singh B N, et al. Atomistic study of the generation, interaction, accumulation and annihilation of cascade-induced defect clusters. J Nucl Mater, 2002, 307: 852–861

    Article  ADS  Google Scholar 

  25. Takahashi A, Soneda N, Ishino S, et al. Structures and energies of vacancy-Cu clusters in alpha-Fe. Phys Rev B, 2003, 67: 024104

    Article  ADS  Google Scholar 

  26. Terentyev D, Malerba L. Interaction of 〈100〉 and (1/2) 〈111〉 dislocation loops with point defects in ferritic alloys. J Nucl Mater, 2008, 377: 141–146

    Article  ADS  Google Scholar 

  27. Golubov S I, Singh B N, Trinkaus H. On recoil-energy-dependent defect accumulation in pure copper-Part II. Theoretical treatment. Philos Mag A, 2001, 81: 2533–2552

    Article  ADS  Google Scholar 

  28. Ortiz C J, Caturla M J. Simulation of defect evolution in irradiated materials: Role of intracascade clustering and correlated recombination. Phys Rev B, 2007, 75: 184101

    Article  ADS  Google Scholar 

  29. Karma A, Rappel W J. Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys Rev E, 1998, 57: 4323–4349

    Article  ADS  MATH  Google Scholar 

  30. Li Y L, Hu S Y, Liu Z K, et al. Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films. Acta Mater, 2002, 50: 395–411

    Article  Google Scholar 

  31. Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys. Phys Rev E, 1999, 60: 7186–7197

    Article  ADS  Google Scholar 

  32. Jin Y M, Artemev A, Khachaturyan A G. Three-dimensional phase field model of low-symmetry martensitic transformation in polycrystal: Simulation of zeta ′(2) martensite in AuCd alloys. Acta Mater, 2001, 49: 2309–2320

    Article  Google Scholar 

  33. Jin Y M, Khachaturyan A G. Phase field microelasticity theory of dislocation dynamics in a polycrystal: Model and three-dimensional simulations. Phil Mag Lett, 2001, 81: 607–616

    Article  Google Scholar 

  34. Chen L Q. Phase-field models for microstructure evolution. Ann Rev Mater Res, 2002, 32: 113–140

    Article  Google Scholar 

  35. Wang Y Z, Chen L Q, Khachaturyan A G. Shape evolution of a precipitate during strain-induced coarsening—a computer-simulation. Scr Metall Mater, 1991, 25: 1387–1392

    Article  Google Scholar 

  36. Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity. Acta Mater, 2001, 49: 1879–1890

    Article  Google Scholar 

  37. Hu S Y, Henager C H, Heinisch H L, et al. Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels. J Nucl Mater, 2009, 392: 292–300

    Article  ADS  Google Scholar 

  38. Hu S Y, Henager C H. Phase-field modeling of void lattice formation under irradiation. J Nucl Mater, 2009, 394: 155–159

    Article  ADS  Google Scholar 

  39. Hu S Y, Henager C H. Phase-field simulation of void migration in a temperature gradient. Acta Mater, 2010, 58: 3230–3237

    Article  Google Scholar 

  40. Cahn J W. On spinodal decomposition. Acta Metall Mater, 1961, 9: 795–801

    Article  Google Scholar 

  41. Kattner U R. The thermodynamic modeling of multicomponent phase equilibria. J Min Met Mat S, 1997, 49: 14–19

    Article  Google Scholar 

  42. Liu Z K. First-principles calculations and CALPHAD modeling of thermodynamics. J Phase Equilib Diffus, 2009, 30: 517–534

    Article  MATH  Google Scholar 

  43. Garner F A, Packan N H, Kumar A S, et al. Radiation-induced changes in microstructure: 13th international symposium (part I). In: ASTM STP 955 (American Society for Testing and Materials). Philadelphia, Pennsylvania, 1986

  44. Frank V N. Phase Transformations During Irradiation. London: Applied Science Publishers, 1983

    Google Scholar 

  45. Souidi A, Becquart C S, Domain C, et al. Dependence of radiation damage accumulation in iron on underlying models of displacement cascades and subsequent defect migration. J Nucl Mater, 2006, 355: 89–103

    Article  ADS  Google Scholar 

  46. Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations. Comput Phys Commun, 1998, 108: 147–158

    Article  ADS  MATH  Google Scholar 

  47. Cahn J W, Hilliard J E. Free energy of a nonuniform system. 3. Nucleation in a 2-component incompressible fluid. J Chem Phys, 1959, 31: 688–699

    ADS  Google Scholar 

  48. Simmons J P, Shen C, Wang Y. Phase field modeling of simultaneous nucleation and growth by explicitly incorporating nucleation events. Scripta Mater, 2000, 43: 935–942

    Article  Google Scholar 

  49. Simmons J P, Wen Y H, Shen C, et al. Microstructural development involving nucleation and growth phenomena simulated with the phase field method. Mat Sci Eng A-Struct, 2004, 365: 136–143

    Article  Google Scholar 

  50. Heo T W, Zhang L, Du Q, et al. Incorporating diffuse-interface nuclei in phase-field simulations. Scripta Mater, 2010, 63: 8–11

    Article  Google Scholar 

  51. Chen L Q, Khachaturyan A G. Computer-simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta Metall Mater, 1991, 39: 2533–2551

    Article  Google Scholar 

  52. Hu S Y, Chen L Q. Solute segregation and coherent nucleation and growth near a dislocation—A phase-field model integrating defect and phase microstructures. Acta Mater, 2001, 49: 463–472

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShenYang Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Hu, S., Sun, X. et al. Phase-field modeling of void evolution and swelling in materials under irradiation. Sci. China Phys. Mech. Astron. 54, 856–865 (2011). https://doi.org/10.1007/s11433-011-4316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4316-y

Keywords

Navigation