Skip to main content
Log in

Thermo-hyperelastic models for nanostructured materials

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In the framework of continuum thermodynamics, the present paper presents the thermo-hyperelastic models for both the surface and the bulk of nanostructured materials, in which the residual stresses are taken into account. Due to the existence of residual stresses, different configuration descriptions of the surface (or the bulk) thermo-hyperelastic constitutive equations are not the same even in the cases of infinitesimal deformation. As an example, the effective thermal expansion coefficient of spherical nanoparticles is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1 :

identity tensor in 3D Euclidean space

A i :

covariant base vectors of the reference configuration

C, C*, Ĉ :

Green deformation tensor defined from the reference to the current configurations, from the stress-free to the reference configurations and from the stress-free to the current configurations, respectively

C sE , C E :

surface and bulk specific heat at constant volume

E, E*, Ê :

Green stain tensor defined from the reference to the current configurations, from the stress-free to the reference configurations and from the stress-free to the current configurations, respectively

E s :

surface Green strain tensor

F, F*, \( \hat F \) :

deformation gradient defined from the reference to the current configurations, from the stress-free to the reference configurations and from the stress-free to the current configurations, respectively

F s , F −1 s :

surface deformation gradient and its inverse

F (o) s , F −1(o) s :

out-plane terms of F s and F −1 s

i :

index ranging over the integers 1, 2 and 3

I 0 :

identity tensor on the tangent plane of the surface in the reference configurations

J, J*:

the determinants of F and F*, respectively

J 1, J 2 :

two invariants of the surface right stretch tensor

k s , k b :

surface and bulk thermal conductivities

L :

elasticity tensor defined in the reference configuration

L 1 :

stress-temperature modulus defined in the reference configuration

P i :

covariant base vectors of the stress-free configuration

q 0 b :

heat flows entering the surface from the bulk defined in the reference configurations

q 0 s , q 0 b :

surface and bulk heat fluxes defined in the reference configuration

\( \hat q_b^R \) R b :

initial value of q 0 b

r 0, \( \bar r \) :

radii of nanoparticles in the reference and the stress-free configurations

r 0 s , r 0 b :

surface and bulk heat supply defined in the reference configuration

S :

first kind Piola-Kirchhoff stress

S s :

first kind Piola-Kirchhoff stress of the surface

T R :

bulk residual stress in the reference configuration

T s :

second kind Piola-Kirchhoff stress of the surface

T s , T b :

surface and bulk temperature, respectively

T 0 s , T 0 b :

surface and bulk reference temperature, respectively

u :

displacement measured from the reference configuration

U s :

surface right stretch tensor

w 0 s :

surface free energy per unit area defined in the reference configuration

α e :

effective thermal expansion coefficient of nanoparticles

β s , β b :

surface and bulk coefficients related to thermal expansion

γ :

surface energy per unit area defined in the current configuration

γ 0*, γ 1*, γ 1 :

surface tension, surface Lamé constants

ɛ 0 s :

surface internal energy per unit area defined in the reference configuration

η 0 s :

surface entropy per unit area defined in the reference configurations

η :

bulk entropy per unit volume

η R :

residual value of η in the reference configuration

λ, μ :

bulk Lamé constants

θ s , θ b :

surface and bulk temperature change, respectively

σ, σ s :

Cauchy stress and surface Cauchy stress, respectively

0, ∇0s :

bulk and surface gradient operators defined in the reference configuration

(∧):

quantity defined in the stress-free configuration

References

  1. Hill T L. Thermodynamics of Small Systems. New York: Dover Pub. INC, 2002

    Google Scholar 

  2. Guo Z Y. Frontier of heat transfer—microscale heat transfer (in Chinese). Adv Mech, 2000, 30: 1–6

    Google Scholar 

  3. Cimalla V, Niebelschutz F, Tonisch K, et al. Nanoelectromechanical devices for sensing applications. Sensor Actuat B, 2007, 126: 24–34

    Article  Google Scholar 

  4. Cleland A N. Foundations of Nanomechanics. Berlin: Springer, 2003

    Google Scholar 

  5. Gleiter H. Nanostructured materials: Basic concepts and microstructure. Acta Mater, 2000, 48: 1–29

    Article  Google Scholar 

  6. Bhushan B. Handbook of Nanotechnology. 3rd Ed. Berlin: Springer, 2010

    Book  Google Scholar 

  7. Tang Z, Zhao H, Li G, et al. Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures. Phys Rev B, 2006, 74: 064110

    Article  ADS  Google Scholar 

  8. Xiao S P, Yang W X. Temperature-related Cauchy-Born rule for multiscale modeling of crystalline solids. Comp Mater Sci, 2006, 37: 374–379

    Article  Google Scholar 

  9. Yang W X, Xiao S P. Extension of the temperature-related Cauchy-Born rule: Material stability analysis and thermo-mechanical coupling. Comp Mater Sci, 2008, 41: 431–439

    Article  Google Scholar 

  10. Yun G, Park H S. A multiscale, finite deformation formulation for surface stress effects on the coupled thermomechanical behavior of nanomaterials. Comput Method Appl Mech Eng, 2008, 197: 3337–3350

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Murdoch A I. A thermodynamical theory of elastic material interfaces. Q J Mech Appl Math, 1976, 29: 245–275

    Article  MathSciNet  MATH  Google Scholar 

  12. Rusanov A. Thermodynamics of solid surfaces. Surf Sci Rep, 1996, 23: 173–247

    Article  ADS  Google Scholar 

  13. Javili A, Steinmann P. On thermomechanical solids with boundary structures. Int J Solids Struct, 2010, 47: 3245–3253

    Article  MATH  Google Scholar 

  14. Chen T, Dvorak G. Fibrous nanocomposites with interface stress: Hill's and Levin's connections for effective moduli. Appl Phys Lett, 2006, 88: 211912

    Article  ADS  Google Scholar 

  15. Duan H L, Karihaloo B L. Thermo-elastic properties of heterogeneous materials with imperfect interfaces: Generalized Levin's formula and Hill's connections. J Mech Phys Solids, 2007, 55: 1036–1052

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gordeliy E, Mogilevskaya S G, Crouch S L. Transient thermal stresses in a medium with a circular cavity with surface effects. Int J Solids Struct, 2009, 46: 1834–1848

    Article  MATH  Google Scholar 

  17. Ru C Q. Size effect of dissipative surface stress on quality factor of microbeams. Appl Phys Lett, 2009, 94: 051905

    Article  ADS  Google Scholar 

  18. Huang Z P, Wang J. A theory of hyperelasticity of multi-phase media with surface/interface energy effect. Acta Mech, 2006, 182: 195–210

    Article  MATH  Google Scholar 

  19. Huang Z P, Sun L. Size-dependent effective properties of a het-erogeneous material with interface energy effect: From finite defor-mation theory to infinitesimal strain analysis. Acta Mech, 2007, 190: 151–163

    Article  MATH  Google Scholar 

  20. Wang Z Q, Zhao Y P. Self-instability and bending behaviors of nano plates. Acta Mech Solida Sinica, 2009, 22: 630–643

    Google Scholar 

  21. Wang Z Q, Zhao Y P, Huang Z P. The effects of surface tension on the elastic properties of nano structures. Int J Eng Sci, 2010, 48: 140–150

    Article  Google Scholar 

  22. Ru C Q. Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci China Phys Mech Astron, 2010, 53: 536–544

    Article  MathSciNet  ADS  Google Scholar 

  23. Truesdell C, Noll W. The Non-linear Field Theories of Mechanics. Berlin: Springer, 2004

    Google Scholar 

  24. Hwang K C, Huang Y G. Solid Constitutive Relations (in Chinese). Beijing: Tsinghua University Press, 1999

    Google Scholar 

  25. Gurtin M E, Fried E, Anand L. The Mechanics and Thermodynamics of Continua. Cambridge: Cambridge University Press, 2009

    Google Scholar 

  26. Dui G S, Wang Z D, Jin M. Derivatives on the isotropic tensor functions. Sci China Ser G-Phys Mech Astron, 2006, 49: 321–334

    Article  ADS  MATH  Google Scholar 

  27. Pathak S, Shenoy V B. Size dependence of thermal expansion of nanostructures. Phys Rev B, 2005, 72: 113404

    Article  ADS  Google Scholar 

  28. Zhou L J, Guo J G, Zhao Y P. Size and temperature-dependent thermal expansion coefficient of a nanofilm. Chinese Phys Lett, 2009, 26: 06620

    Google Scholar 

  29. Murdoch A I. Some fundamental aspects of surface modeling. J Elast, 2005, 80: 33–52

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaPu Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Zhao, Y. Thermo-hyperelastic models for nanostructured materials. Sci. China Phys. Mech. Astron. 54, 948–956 (2011). https://doi.org/10.1007/s11433-011-4299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4299-8

Keywords

Navigation