Skip to main content
Log in

On determination of the damping factor of linear viscoelastic materials using dynamic indentation: a theoretical study

  • Research Paper
  • Special Issue: Forward for the Department of Engineering Mechanics, Tsinghua University
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this study, we theoretically investigate the dynamic indentation for measuring the loss (damping) factor of a linear viscoelastic material from its indentation response. A rigid indenter with arbitrary tip profile is assumed to indent into a viscoelastic substrate with arbitrary shape. We perform a theoretical analysis and identify the conditions under which the loss factor of the material can be determined from the phase angle between the applied harmonic indentation load and the corresponding harmonic displacement, a directly measurable quantity in a dynamic indentation test. To validate the conclusion drawn from our theoretical analysis, a series of numerical experiments are performed, including the spherical indentation of a soft layer with irregular surface morphology bonded to a rigid substrate, a conical indenter with tip defects indenting into a half-spherical particle, and the indentation of porous materials. This study may facilitate the use of the dynamic indentation technique to evaluate the damping properties of linear viscoelastic materials, including some advanced polymers and biological soft tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suhr J, Koratkar N, Keblinski P, et al. Viscoelasticity in carbon nanotube composites. Nat Mater, 2005, 4: 134–137

    Article  ADS  Google Scholar 

  2. Levental I, Georges P C, Janmey P A. Soft biological materials and their impact on cell function. Soft Matter, 2007, 3: 299–206

    Article  ADS  Google Scholar 

  3. Lee B, Han L, Frank E H, et al. Dynamic mechanical properties of the tissue-engineered matrix associated with individual chondrocytes. J Biomech, 2010, 43: 469–476

    Article  Google Scholar 

  4. Shimizu S, Yanagimoto T, Sakai M. Pyramidal indentation load-depth curve of viscoelastic materials. J Mater Res, 1999, 14: 4075–4086

    Article  ADS  Google Scholar 

  5. Fischer-Cripps A C. Nanoindentation. New York: Springer, 2002

    Google Scholar 

  6. Lu H, Wang B, Ma J, et al. Measurement of creep compliance of solid polymers by nanoindentation. Mech Time-Depend Mater, 2003, 7: 189–207

    Article  ADS  Google Scholar 

  7. Cheng Y T, Cheng C M. Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R, 2004, 44: 91–149

    Article  Google Scholar 

  8. Ngan A H W, Wang H T, Tang B, et al. Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int J Solids Struct, 2005, 42: 1831–1846

    Article  MATH  Google Scholar 

  9. Ebenstein D M, Pruitt L A. Nanoindentation of biological materials. Nano Today, 2006, 1: 26–33

    Article  Google Scholar 

  10. Vandamme M, Ulm F J. Viscoelastic solutions for conical indentation. Int J Solids Struct, 2006, 43: 3142–3165

    Article  MATH  Google Scholar 

  11. Constantinides G, Kalcioglu Z L, McFarland M, et al. Probing mechanical properties of fully hydrated gels and biological tissues. J Biomech, 2008, 41: 3285–3289

    Article  Google Scholar 

  12. Cheng Y T, Yang F Q. Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles. J Mater Res, 2009, 24: 3013–3017

    Article  ADS  Google Scholar 

  13. Oyen M L, Cook R F J. Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J Mater Res, 2003, 18: 139–150

    Article  ADS  Google Scholar 

  14. Oyen M L. Spherical indentation creep following ramp loading. J Mater Res, 2005, 20: 2094–2100

    Article  ADS  Google Scholar 

  15. Oyen M L. Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater, 2007, 55: 3633–3639

    Article  Google Scholar 

  16. Cao Y P, Ma D C, Raabe D. The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomater, 2009, 5: 240–248

    Article  Google Scholar 

  17. Nashif A D, Jones D I G, Henderson J P. Vibration Damping. New York: Wiley, 1985

    Google Scholar 

  18. Corsaro R D, Sperling L H. Sound and Vibration Damping with Polymers. Washington DC: American Chemical Society, 1990

    Book  Google Scholar 

  19. Cao Y P, Ji X Y, Feng X Q. Geometry independence of the normalized relaxation functions of viscoelastic materials in indentation. Phil Mag, 2010, 90: 1639–1655

    Article  ADS  Google Scholar 

  20. Lucas B N, Oliver W C, Swindeman J E. The dynamics of frequency-specific, depth-sensing indentation testing. In: Moody N R, Gerberich W W, Burnham N, et al., eds. Materials-Research-Society Symposium on Fundamentals of Nanoindentation and Nanotribology. San Francisco: Materials Research Society, 1998. 522: 3–14

    Google Scholar 

  21. Loubet J L, Oliver W C, Lucas B N. Measurement of the loss tangent of low-density polyethylene with a nanoindentation technique. J Mater Res, 2000, 15: 1195–1198

    Article  ADS  Google Scholar 

  22. Fischer-Cripps A C. Multiple-frequency dynamic nanoindentation testing. J Mater Res, 2004, 19: 2981–2988

    Article  ADS  Google Scholar 

  23. Cheng Y T, Ni W Y, Cheng C M. Nonlinear analysis of oscillatory indentation in elastic and viscoelastic solids. Phys Rev Lett, 2006, 97: 075506

    Article  ADS  Google Scholar 

  24. Huang G, Wang B, Lu H. Measurements of viscoelastic functions of polymers in the frequency-domain using nanoindentation. Mech Time-Depend Mater, 2004, 8: 345–364

    Article  ADS  Google Scholar 

  25. Herbert E G, Oliver W C, Pharr G M. Nanoindentation and the dynamic characterization of viscoelastic solids. J Phys D-Appl Phys, 2008, 41: 074021

    Article  Google Scholar 

  26. Herbert E G, Oliver W C, Lumsdaine A, et al. Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat punch nanoindentation. J Mater Res, 2009, 24: 626–637

    Article  ADS  Google Scholar 

  27. Christensen R M. Theory of viscoelasticity: An introduction. New York: Academic Press, 1982

    Google Scholar 

  28. Cao Y P. Determination of the creep exponent of a power-law creep solid using indentation tests. Mech Time-Depend Mater, 2007, 11: 159–172

    Article  ADS  Google Scholar 

  29. ABAQUS User’s Manual, Version 6.5.1. Providence: Hibbit, Karlsson & Sorenson, 2006

  30. Huang G, Lu H B. Measurement of Young’s relaxation modulus using nanoindentation. Mech Time-Depend Mater, 2006, 10: 229–243

    Article  ADS  MathSciNet  Google Scholar 

  31. Tan E P S, Lim C T. Mechanical characterization of nanofibers—A review. Compos Sci Technol, 2006, 66: 1102–1111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YanPing Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Ji, X. & Feng, X. On determination of the damping factor of linear viscoelastic materials using dynamic indentation: a theoretical study. Sci. China Phys. Mech. Astron. 54, 598–605 (2011). https://doi.org/10.1007/s11433-011-4279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-011-4279-z

Keywords

Navigation