Skip to main content
Log in

Superconductivity and normal state magnetoresistance in superconducting FeSe:Sb

  • Research Paper
  • Recent Development of Iron Pnictide Superconductors
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We prepared a series of β-FeSe samples with a nominal composition of Fe1.11Se1−x Sb x (0⩽x⩽0.5). The X-ray diffraction, transport and magnetic measurements were performed on these samples to investigate the structure, the superconducting properties and the normal state transport and magnetic properties. Although the X-ray diffraction data suggested that Sb atoms were not incorporated into the β-FeSe phase, the transport data showed observable changes of superconductivity, normal state resistivity and magnetoresistance. This was represented by the increase in the superconducting transition temperature and the upper critical field. Also, for the samples with a low level of Sb content, a clear decrease of the normal state resistivity and a substantial increase of the residual resistance ratio were observed. Furthermore, the samples showed a significant increase of the normal state magnetoresistance that appeared not to follow the Kohler’s rule. The results were discussed in the frame of reduction of excess Fe at interstitial sites of β-FeSe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamihara Y, Watanabe T, Hirano M, et al. Iron-based layered superconductor LaO1−x FxFeAs (x=0.05–0.12) with T c=26 K. J Am Chem Soc, 2008, 130: 3296–3297

    Article  Google Scholar 

  2. Ren Z A, Lu W, Yang J, et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound SmO1−x FxFeAs. Chin Phys Lett, 2008, 25: 2215–2216

    Article  ADS  Google Scholar 

  3. Rotter M, Tegel M, Johrendt D. Superconductivity at 38 K in the iron arsenide (Ba1−x Kx)Fe2As2. Phys Rev Lett, 2008, 101: 107006

    Article  ADS  Google Scholar 

  4. Wang X C, Liu Q Q, Lv Y X, et al. The superconductivity at 18 K in LiFeAs system. Solid State Commun, 2008, 148: 538–540

    Article  ADS  Google Scholar 

  5. Hsu F C, Luo J Y, Yeh K W, et al. Superconductivity in the PbO-type structure α-FeSe. Proc Natl Acad Sci U S A, 2008, 105: 14262–14264

    Article  ADS  Google Scholar 

  6. Margadonna S, Takabayashi Y, Ohishi Y, et al. Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (T c = 37 K). Phys Rev B, 2009, 80: 064506

    Article  ADS  Google Scholar 

  7. Medvedev S, McQueen T M, Troyan I A, et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure. Nat Mater, 2009, 8: 630–633

    Article  ADS  Google Scholar 

  8. Yeh K W, Huang T W, Huang Y L, et al. Tellurium substitution effect on superconductivity of the α-phase iron selenide. Eur Phys Lett, 2008, 84: 37002

    Article  ADS  Google Scholar 

  9. Mizuguchi Y, Tomioka F, Tsuda S, et al. Superconductivity in S-substituted FeTe. Appl Phys Lett, 2009, 94: 012503

    Article  ADS  Google Scholar 

  10. Subedi A, Zhang L J, Singh D J, et al. Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity. Phys Rev B, 2008, 78: 134514

    Article  ADS  Google Scholar 

  11. Wu M K, Hsu F C, Yeh K W, et al. The development of the superconducting PbO-type β-FeSe and related compounds. Physica C, 2009, 469: 340–349

    Article  ADS  Google Scholar 

  12. Dong C. Powder X: Windows-95-based program for powder X-ray diffraction data processing. J Appl Crystallogr, 1999, 32: 838

    Article  Google Scholar 

  13. McQueen T M, Huang Q, Ksenofontov V, et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys Rev B, 2009, 79: 014522

    Article  ADS  Google Scholar 

  14. Margadonna S, Takabayashi Y, McDonald M T, et al. Crystal structure of the new FeSe1−x superconductor. Chem Commun, 2008, (43): 5607–5609

  15. McQueen T M, Williams A J, Stephens P W, et al. Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se. Phys Rev Lett, 2009, 103: 057002

    Article  ADS  Google Scholar 

  16. Millican J N, Phelan D, Thomas E L, et al. Pressure-induced effects on the structure of the FeSe superconductor. Solid State Commun, 2009, 149: 707–710

    Article  ADS  Google Scholar 

  17. Imai T, Ahilan K, Ning F L, et al. Why does undoped fese become a high-T c superconductor under pressure? Phys Rev Lett, 2009, 102: 177005

    Article  ADS  Google Scholar 

  18. Bao W, Qiu Y, Huang Q, et al. Tunable (δπ, δπ)-Type antiferromagnetic order in α-Fe(Te,Se) superconductors. Phys Rev Lett, 2009, 102:247001 (see lattice parameter c in arxiv: 0809.2058v1)

    Article  ADS  Google Scholar 

  19. Chen G F, Chen Z G, Dong J, et al. Electronic properties of singlecrystalline Fe1.05Te and Fe1.03Se0.30Te0.70. Phys Rev B, 2009, 79: 140509

    Article  ADS  Google Scholar 

  20. Werthamer N R, Helfand E, Hohenberg P C. Temperature and purity dependence of the superconducting critical field, HC2. III. Electron spin and spin-orbit effects. Phys Rev, 1966, 147: 295–302

    Article  ADS  Google Scholar 

  21. Helfand E, Werthamer N R. Temperature and purity dependence of the superconducting critical field, H C2. II. Phys Rev, 1966, 147: 288–294

    Article  ADS  Google Scholar 

  22. Maki K. Effect of pauli paramagnetism on magnetic properties of high-field superconductors. Phys Rev, 1966, 148: 362–369

    Article  ADS  Google Scholar 

  23. Eilenberger G. Determination of κ 1(T) and κ 2(T) for Type-II superconductors with arbitrary impurity concentration. Phys Rev, 1967, 153: 584–598

    Article  ADS  Google Scholar 

  24. Nakayama K, Sato T, Richard P, et al. Angle-resolved photoemission spectroscopy of iron-chalcogenide superconductor Fe1.03Te0.7Se0.3: Strong-coupling superconductivity and universality of inter-band scattering. arXiv: 0907.0763v1

  25. Dong J, Zhang H J, Xu G, et al. Competing orders and spin-densitywave instability in La(O1−x Fx)FeAs. Eur Phys Lett, 2008, 83: 27006

    Article  ADS  Google Scholar 

  26. Chen G F, Li Z, Dong J, et al. Transport and anisotropy in single-crystalline SrFe2As2 and A0.6K0.4Fe2As2 (A=Sr, Ba) superconductors. Phys Rev B, 2008, 78: 224512

    Article  ADS  Google Scholar 

  27. Zhu X Y, Yang H, Fang L, et al. Upper critical field, hall effect and magnetoresistance in the iron-based layered superconductor La-FeAsO0.9F0.1−δ. Supercond Sci Technol, 2008, 21: 105001

    Article  ADS  Google Scholar 

  28. Yang H, Liu Y, Zhuang C, et al. Fully band-resolved scattering rate in MgB2 revealed by the nonlinear hall effect and magnetoresistance measurements. Phys Rev Lett, 2008, 101: 067001

    Article  ADS  Google Scholar 

  29. Ma F J, Ji W, Hu J P, et al. First-principles calculations of the electronic structure of tetragonal α-FeTe and α-FeSe crystals: Evidence for a bicollinear antiferromagnetic order. Phys Rev Lett, 2009, 102: 177003

    Article  ADS  Google Scholar 

  30. Li Q, Liu B T, Hu Y F, et al. Large anisotropic normal-state magnetoresistance in clean MgB2 thin films. Phys Rev Lett, 2006, 96: 167003

    Article  ADS  Google Scholar 

  31. Xi X X, Pogrebnyakov A V, Xu S Y, et al. MgB2 thin films by hybrid physical-chemical vapor deposition. Physica C, 2007, 456: 22–37

    Article  ADS  Google Scholar 

  32. Li S L, de la Cruz C, Huang Q, et al. First-order magnetic and structural phase transitions in Fe1+y SexTe1−x . Phys Rev B, 2009, 79: 054503

    Article  ADS  Google Scholar 

  33. Pitcher M J, Parker D R, Adamson P, et al. Structure and superconductivity of LiFeAs. Chem Commun, 2008, (45): 5918–5920

    Article  Google Scholar 

  34. Zhang L J, Singh D J, Du M H. Density functional study of excess Fe in Fe1+x Te: Magnetism and doping. Phys Rev B, 2009, 79: 012506

    Article  ADS  Google Scholar 

  35. Lee K W, Pardo V, Pickett W E. Magnetism driven by anion vacancies in superconducting α-FeSe1−x . Phys Rev B, 2008, 78: 174502

    Article  ADS  Google Scholar 

  36. Wu X J, Zhang Z Z, Zhang J Y, et al. Two-carrier transport and ferromagnetism in FeSe thin films. J Appl Phys, 2008, 103: 113501

    Article  ADS  Google Scholar 

  37. Fang M H, Pham H M, Qian B, et al. Superconductivity close to magnetic instability in Fe(Se1−x Tex)0.82. Phys Rev B, 2008, 78: 224503

    Article  ADS  Google Scholar 

  38. Li L, Yang Z R, Ge M, et al. Pressure effect on superconductivity and magnetism in α-FeSex. J Supercond Novel Magn, 2009, 22: 667–670

    Article  Google Scholar 

  39. Okamoto H. The fese (ironselenium) system. J Phase Equilib, 1991, 12: 383–389

    Article  Google Scholar 

  40. Okamoto H. Fe-Sb (iron-antimony). J Phase Equilib, 1999, 20: 166

    Google Scholar 

  41. Kumar R, Harchand K S, Vishwamittar, et al. Investigation of the Fe1+x Sb system. Phys Rev B, 1985, 32: 69–75

    Article  ADS  Google Scholar 

  42. Amornpitoksuk P, Ravot D, Mauger A, et al. Structural and magnetic properties of the ternary solid solution between CoSb and Fe1+δ Sb. Phys Rev B, 2008, 77: 144405

    Article  ADS  Google Scholar 

  43. Yashiro T, Yamaguch Y, Tomiyosh S, et al. Magnetic Structure of Fe1+δSb. J Phys Soc Jpn, 1973, 34: 58–62

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DongNing Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, H., Li, J., Li, S. et al. Superconductivity and normal state magnetoresistance in superconducting FeSe:Sb. Sci. China Phys. Mech. Astron. 53, 1180–1186 (2010). https://doi.org/10.1007/s11433-010-4049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4049-3

Keywords

Navigation