Skip to main content
Log in

A first-principles study of the size-dependent electronic properties of SiC nanotubes

  • Research Paper
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

We investigate the structural and electronic properties of SiC nanotubes (NTs) with hexagonal cross sections by a first-principles calculation using plane-wave ultra-soft pseudo-potential technology based on the density-functional theory. Our results reveal that surface-layer C and Si atoms relax significantly upon decreasing the tube-wall thickness because of surface-size and quantum-size effects. We also find that all relaxed SiC NTs stay stably on the nanoscale because of an admixture of sp2 and sp3 hybridization between C and Si atoms and a strong covalent, and that the band gap tends to decrease with increasing tube-wall thickness. Our calculations further indicate that both C and Si atoms on the inner and outer surface of SiC NTs contribute to defect states at the top of the valence band and at the bottom of the conduction band. These results provide reference information for a thorough understanding of the properties of SiC nanostructures and also enable more precise monitoring and control of the growth of SiC nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 2001, 354: 56–58

    Article  ADS  Google Scholar 

  2. Madar R. Silicon carbide in contention. Nature, 2004, 430: 974–975

    Article  ADS  Google Scholar 

  3. Sun X H, Li C P, Wong W K. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc, 2002, 124: 14464–14471

    Article  Google Scholar 

  4. Niu J J, Wang J N, Xu N S. Field emission property of aligned and random SiC nanowires arrays synthesized by a simple vaporesolid reaction. Solid State Sci, 2008, 10: 618–621

    Article  ADS  Google Scholar 

  5. Gali A. Ab initio study of nitrogen and boron substitutional impurities in single-wall SiC nanotubes. Phys Rev B, 2006, 73: 245415

    Article  ADS  Google Scholar 

  6. Alam K M, Ray A K. Hybrid density functional study of armchair SiC nanotubes. Phys Rev B, 2008, 77: 035436

    Article  ADS  Google Scholar 

  7. Alam K M, Ray A K. Interactions of Fe atom with single wall armchair SiC nanotubes: An ab initio study. J Nanopart Res, 2009, 11: 1405–1420

    Article  Google Scholar 

  8. Mukherjee S, Ray A K. An initio study of molecular hydrogen interaction with SiC nanotube-A precursor to hydrogen storage. J Comput Theor Nanosci, 2008, 5: 1210–1219

    Article  Google Scholar 

  9. Keller N, Pham-Huu C, Ehret G, et al. Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon, 2003, 41: 2131–2139

    Article  Google Scholar 

  10. Borowiak-Palen E, Ruemmeli M H, Gemming T. Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution. J Appl Phys, 2005, 97: 056102

    Article  ADS  Google Scholar 

  11. Zhou J Y, Zhou M, Chen Z Y, et al. SiC nanotubes arrays fabricated by sputtering using electrospun PVP nanofiber as templates. Surf Coat Technol, 2009, 203: 3219–3223

    Article  Google Scholar 

  12. Menon M, Richter E, Mavrandonakis A, et al. Structure and stability of SiC nanotubes. Phys Rev B, 2004, 69: 115322

    Article  ADS  Google Scholar 

  13. Huang S P, Wu D S, Hu J M, et al. First-principles study: Size-dependent optical properties for semiconducting silicon carbide nanotubes. Opt Express, 2007, 15: 10949–10957

    Google Scholar 

  14. Baumeier B, Krüger P, Pollmann J. Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B, 2007, 76: 085407

    Article  ADS  Google Scholar 

  15. Wu I J, Guo G Y. Second-harmonic generation and linear electro-optical coefficients of SiC polytypes and nanotubes. Phys Rev B, 2008, 78: 035447

    Article  ADS  Google Scholar 

  16. Baierle R J, Miwa R H. Hydrogen interaction with native defects in SiC nanotubes. Phys Rev B, 2007, 76: 205410

    Article  ADS  Google Scholar 

  17. Mukherjee S, Ray A K. An initio study of molecular hydrogen interaction with SiC nanotube-a precursor to hydrogen storage. J Comput Theor Nanosci, 2008, 5: 1210–1219

    Article  Google Scholar 

  18. Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP. Z Kristallogr, 2005, 220: 567–570

    Article  Google Scholar 

  19. Ji D, Gao X, Kong X Y, et al. Atomistic failure mechanism of single wall carbon nanotubes with small diameters. Chin Phy Lett, 2007, 24: 165–169

    Article  ADS  Google Scholar 

  20. Milkie D E, Staii C, Paulson S, et al. Controlled switching of optical emission energies in semiconducting single-walled carbon nanotubes. Nano Lett, 2005, 5: 1135–1138

    Article  ADS  Google Scholar 

  21. Goldberger J, He R, Zhang Y, et al. Single-crystal gallium nitride nanotubes. Nature, 2003, 422: 599–603

    Article  ADS  Google Scholar 

  22. Zhao M W, Xia Y Y, Li F, et al. Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations. Phys Rev B, 2005, 71: 085312

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiYong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Zhang, F., Zhang, Z. et al. A first-principles study of the size-dependent electronic properties of SiC nanotubes. Sci. China Phys. Mech. Astron. 53, 1333–1338 (2010). https://doi.org/10.1007/s11433-010-4029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-010-4029-7

Keywords

Navigation