Skip to main content
Log in

Modeling the radio and optical/NIR afterglows of GRB 980703: A numerical study

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Extensive multi-band afterglow data are available for GRB 980703. Especially, its radio afterglow was very bright and was monitored until more than 1000 days after the trigger time. Additionally, there is no obvious special feature, i.e., no rebrightenings, no plateau, and no special steep decay or slow decay in the multi-band afterglow light curves. All these conditions make GRB 980703 a precious sample in gamma-ray burst research. Here we use the observational data of GRB 980703 to test the standard fireball model in depth. It is found that the model can give a satisfactory explanation to the multi-band and overall afterglow light curves. The beaming angle of GRB 980703 is derived as ∼ 0.23 radian, and the circum-burst medium density is ∼ 27 cm−3. The total isotropic equivalent kinetic energy of the ejecta is ∼ 3.8 × 1052 ergs. A rest-frame extinction of A V ∼ 2.5 mag in the host galaxy is also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klebesadel R W, Strong I B, Olson R A. Observations of gamma-ray bursts of cosmic origin. Astrophys J, 1973, 182: L85–L88

    Article  ADS  Google Scholar 

  2. Costa E, Frontera F, Heise J, et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature, 1997, 387: 783–785

    Article  ADS  Google Scholar 

  3. van Paradijs J, Groot P J, Galama T, et al. Transient optical emission from the error box of the γ-ray burst of 28 February 1997. Nature, 1997, 386: 686–689

    Article  ADS  Google Scholar 

  4. Frail D A, Kulkarni S R, Nicastro L, et al. The radio afterglow from the γ-ray burst of 8 May 1997. Nature, 1997, 389: 261–263

    Article  ADS  Google Scholar 

  5. Piran T. Gamma-ray bursts and the fireball model. Phys Rep, 1999, 314: 575–667

    Article  ADS  Google Scholar 

  6. Mészáros P. Theories of gamma-ray bursts. Annu Rev Astron Astrophys, 2002, 40: 137–169

    Article  Google Scholar 

  7. Zhang B, Mészáros P. Gamma-ray bursts: Progress, problems & prospects. Int J Mod Phys A, 2004, 19: 2385–2472

    Article  ADS  Google Scholar 

  8. Piran T. The physics of gamma-ray bursts. Rev Mod Phys, 2005, 76: 1143–1210

    Article  ADS  Google Scholar 

  9. Mészáros P. Gamma-ray bursts. Rep Prog Phys, 2006, 69: 2259–2321

    Article  Google Scholar 

  10. Nakar E. Short-hard gamma-ray bursts. Phys Rep, 2007, 442: 166–236

    Article  ADS  Google Scholar 

  11. Zhang B. Gamma-ray bursts in the Swift era. Chin J Astron Astrophys, 2007, 7: 1–50

    Article  ADS  Google Scholar 

  12. Sari R, Piran T, Narayan R. Spectra and light curves of gamma-ray burst afterglows. Astrophys J, 1998, 497: L17–L20

    Article  ADS  Google Scholar 

  13. Harrison F A, Yost S A, Sari R, et al. Broadband observations of the afterglow of GRB 000926: Observing the effect of inverse Compton scattering. Astrophys J, 2001, 559: 123–130

    Article  ADS  Google Scholar 

  14. Yost S A, Frail D A, Harrison F A, et al. The broadband afterglow of GRB 980329. Astrophys J, 2002, 577: 155–163

    Article  ADS  Google Scholar 

  15. Frail D A, Yost S A, Berger E, et al. The broadband afterglow of GRB 980703. Astrophys J, 2003, 590: 992–998

    Article  ADS  Google Scholar 

  16. Chen S L, Li A, Wei D M. Dust extinction of gamma-ray burst host galaxies: Identification of two classes? Astrophys J, 2006, 647: L13–L16

    Article  ADS  Google Scholar 

  17. Li Y, Li A, Wei D M. Determining the dust extinction of gamma-ray burst host galaxies: A direct method based on optical and X-ray photometry. Astrophys J, 2008, 678: 1136–1141

    Article  ADS  Google Scholar 

  18. Panaitescu A, Kumar P. Jet energy and other parameters for the afterglows of GRB 980703, GRB 990123, GRB 990510, and GRB 991216 determined from modeling of multifrequency data. Astrophys J, 2001, 554: 667–677

    Article  ADS  Google Scholar 

  19. Panaitescu A, Kumar P. Fundamental physical parameters of collimated gamma-ray burst afterglows. Astrophys J, 2001, 560: L49–L53

    Article  ADS  Google Scholar 

  20. Huang Y F, Cheng K S. Gamma-ray bursts: Optical afterglows in the deep Newtonian phase. Mon Not Roy Astron Soc, 2003, 341: 263–269

    Article  ADS  Google Scholar 

  21. Levine A, Morgan E, Muto M. GRB 980703. IAU Circ, 1998: 6966

  22. Hurley K, Kouveliotou C. GRB 980703. GCN Circ, 1998: 125 (http://gcn.gsfc.nasa.gov/gcn/gcn3/125.gcn3)

  23. Kippen R M. GRB 980703: BATSE observations. GCN Circ, 1998: 143 (http://gcn.gsfc.nasa.gov/gcn/gcn3/143.gcn3)

  24. Amati L, Frontera F, Costa E, et al. GRB 980703 — BeppoSAX/GRBM detection. GCN Circ, 1998: 146 (http://gcn.gsfc.nasa.gov/gcn/gcn3/146.gcn3)

  25. Galama T J, van Paradijs J, Antonelli L A, et al. BeppoSAX NFI observations of GRB 980703. GCN Circ, 1998: 127 (http://gcn.gsfc.nasa.gov/gcn/gcn3/127.gcn3)

  26. Frail D A, Halpern J P, Bloom J S, et al. GRB 980703: Radio source/optical transient. GCN Circ, 1998: 128 (http://gcn.gsfc.nasa.gov/gcn/gcn3/128.gcn3)

  27. Schlegel D J, Finkbeiner D P, Davis M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys J, 1998, 500: 525–553

    Article  ADS  Google Scholar 

  28. Bloom J S, Frail D A, Kulkarni S R, et al. The discovery and broadband follow-up of the transient afterglow of GRB 980703. Astrophys J, 1998, 508: L21–L24

    Article  ADS  Google Scholar 

  29. Castro-Tirado A J, Zapatero-Osorio M R, Gorosabel J, et al. The optical/IR counterpart of the 1998 July 3 gamma-ray burst and its evolution. Astrophys J, 1999, 511: L85–L88

    Article  ADS  Google Scholar 

  30. Vreeswijk P M, Galama T J, Owens A, et al. The X-ray, optical, and infrared counterpart to GRB 980703. Astrophys J, 1999, 523: 171–176

    Article  ADS  Google Scholar 

  31. Djorgovski S G, Kulkarni S R, Goodrich R, et al. GRB 980703: Spectrum of the proposed optical counterpart. GCN Circ, 1998: 139 (http://gcn.gsfc.nasa.gov/gcn/gcn3/139.gcn3)

  32. Djorgovski S G, Kulkarni S R, Bloom J S, et al. Spectroscopy of the host galaxy of the gamma-ray burst 980703. Astrophys J, 1998, 508: L17–L20

    Article  ADS  Google Scholar 

  33. Holland S, Fynbo J P U, Hjorth J, et al. The host galaxy and optical light curve of the gamma-ray burst GRB 980703. Astron Astrophys, 2001, 371: 52–60

    Article  ADS  Google Scholar 

  34. Sokolov V V, Fatkhullin T A, Castro-Tirado A J, et al. Host galaxies of gamma-ray bursts: Spectral energy distributions and internal extinction. Astron Astrophys, 2001, 372: 438–455

    Article  ADS  Google Scholar 

  35. Berger E, Kulkarni S R, Frail D A. The host galaxy of GRB 980703 at radio wavelengths — a nuclear starburst in an ultraluminous infrared galaxy. Astrophys J, 2001, 560: 652–658

    Article  ADS  Google Scholar 

  36. Huang Y F, Dai Z G, Lu T. A generic dynamical model of gamma-ray burst remnants. Mon Not Roy Astron Soc, 1999, 309: 513–516

    Article  ADS  Google Scholar 

  37. Huang Y F, Dai Z G, Lu T. On the optical light curves of afterglows from jetted gamma-ray burst ejecta: Effects of parameters. Mon Not Roy Astron Soc, 2000, 316: 943–949

    Article  ADS  Google Scholar 

  38. Huang Y F, Gou L J, Dai Z G, et al. Overall evolution of jetted gamma-ray burst ejecta. Astrophys J, 2000, 543: 90–96

    Article  ADS  Google Scholar 

  39. Dai Z G, Huang Y F, Lu T. Gamma-ray burst afterglows from realistic fireballs. Astrophys J, 1999, 520: 634–640

    Article  ADS  Google Scholar 

  40. Wu X F, Dai Z G, Huang Y F, et al. Afterglow light curves of jetted gamma-ray burst ejecta in stellar winds. Chin J Astron Astrophys, 2004, 4: 455–472

    Article  ADS  Google Scholar 

  41. Rybicki G B, Lightman A P. Radiative Processes in Astrophysics. New York: Wiley, 1979

  42. Wei D M, Lu T. The influence of inverse Compton scattering on GRB afterglows: One possible way to flatten and steepen the light curves. Astron Astrophys, 2000, 360: L13–L16

    ADS  Google Scholar 

  43. Sari R, Esin A A. On the synchrotron self-Compton emission from relativistic shocks and its implications for gamma-ray burst afterglows. Astrophys J, 2001, 548: 787–799

    Article  ADS  Google Scholar 

  44. Huang Y F, Lu Y, Wong A Y L, et al. A detailed study on the equal arrival time surface effect in gamma-ray burst afterglows. Chin J Astron Astrophys, 2007, 7: 397–404

    Article  ADS  Google Scholar 

  45. Goodman J. Radio scintillation of gamma-ray burst afterglows. New Astron, 1997, 2: 449–460

    Article  ADS  Google Scholar 

  46. Walker M A. Interstellar scintillation of compact extragalactic radio sources. Mon Not Roy Astron Soc, 1998, 294: 307–311

    Article  ADS  Google Scholar 

  47. Walker M A. Erratum: Interstellar scintillation of compact extragalactic radio sources. Mon Not Roy Astron Soc, 2001, 321: 176

    Article  ADS  Google Scholar 

  48. Bloom J S, Kulkarni S R. The hosts of GRB 980703 and GRB 971214. GCN Circ, 2000: 702 (http://gcn.gsfc.nasa.gov/gcn/gcn3/702.gcn3)

  49. Pei Y C. Interstellar dust from the Milky Way to the Magellanic Clouds. Astrophys J, 1992, 395: 130–139

    Article  ADS  Google Scholar 

  50. Frail D A, Cameron P B, Kasliwal M, et al. An energetic afterglow from a distant stellar explosion. Astrophys J, 2006, 646: L99–L102

    Article  ADS  Google Scholar 

  51. Frail D A, Kulkarni S R, Sari R, et al. Beaming in gamma-ray bursts: Evidence for a standard energy reservoir. Astrophys J, 2001, 562: L55–L58

    Article  ADS  Google Scholar 

  52. Bloom J S, Frail D A, Sari R. The prompt energy release of gamma-ray bursts using a cosmological k-correction. Astron J, 2001, 121: 2879–2888

    Article  ADS  Google Scholar 

  53. Rol E, van der Horst A, Wiersema K, et al. GRB 051022: Physical parameters and extinction of a prototype dark burst. Astrophys J, 2007, 669: 1098–1106

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YongFeng Huang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10625313 and 10973039), the National Basic Research Program of China (Grant No. 2009CB824800), and a GRF Grant of Hong Kong Government (Grant No. HKU701109P)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, S., Huang, Y., Cheng, K. et al. Modeling the radio and optical/NIR afterglows of GRB 980703: A numerical study. Sci. China Ser. G-Phys. Mech. Astron. 52, 2047–2053 (2009). https://doi.org/10.1007/s11433-009-0275-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0275-y

Keywords

Navigation