Skip to main content
Log in

Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

The influences of the modification of turbulent coherent structures on temperature field and heat transfer in turbulent channel flow are studied using large eddy simulation (LES) of compressible turbulent channel flows with spanwise wall oscillation (SWO). The reliability of the LES on such problems is proved by the comparisons of the drag reduction data with those of other researches. The high consistency of coherent velocity structures and temperature structures is found based on the analyses of the turbulent flow field. When the coherent velocity structures are suppressed, the transportations of momentum and heat are reduced simultaneously, demonstrating the same trend. This shows that the turbulent coherent structures have the same effects on the transportations of momentum and heat. The averaged wall heat flux can be reduced with appropriate oscillating parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jung W J, Mangiavacchi N, Akhavan R. Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys Fluids A, 1992, 4(8): 1605–1607

    Article  ADS  Google Scholar 

  2. Akhavan R, Jung W J, Mangiavacchi N. Control of wall turbulence by high frequency spanwise oscillation. In: Shear Flow Conference. Orlando: AIAA, 1993. AIAA-93-3282

    Google Scholar 

  3. Laadhari F, Skandaji L, Morel R. Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys Fluids, 1994, 6(10): 3218–3220

    Article  ADS  Google Scholar 

  4. Baron A, Quadrio M. Turbulent drag reduction by spanwise wall oscillations. Appli Sci Res, 1996, 55(4): 311–326

    Article  MATH  Google Scholar 

  5. Orlandi P, Fatica M. Direct simulations of turbulent flow in a pipe rotating about its axis. J Fluid Mech, 1997, 343: 43–72

    Article  MATH  ADS  Google Scholar 

  6. Dhanak M R, Si C. On reduction of turbulent wall friction through spanwise wall oscillations. J Fluid Mech, 1999, 383: 175–195

    Article  MATH  ADS  Google Scholar 

  7. Quadrio M, Sibilla S. Numerical simulation of turbulent flow in a pipe oscillating around its axis. J Fluid Mech, 2000, 424: 217–241

    Article  MATH  ADS  Google Scholar 

  8. Choi J I, Xu C-X, Sung H J. Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J, 2002, 40(5): 842–850

    Article  ADS  Google Scholar 

  9. Huang X W, Xu C X, Cui G X, et al. The influence of spanwise wall oscillation on the transportation of Reynolds stress. In: Proceedings of 2003’ Fluid Mechanics Youth Workshop, 2003. 206–211

  10. Huang W X, Xu C X, Cui G X, et al. Mechanism of drag reduction by spanwise wall oscillation in turbulent channel flow. Acta Mech Sin, 2004, 36(1): 24–30

    Google Scholar 

  11. Quadrio M, Ricco P. Critical assessment of turbulent drag reduction through spanwise wall oscillations. J Fluid Mech, 2004, 521: 251–271

    Article  MATH  ADS  Google Scholar 

  12. Zhou D, Ball K S. The Mechanism of turbulent drag reduction by spanwise wall oscillation. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, California, 2006. 1–14

  13. Riccoa P, Quadrio M. Wall-oscillation conditions for drag reduction in turbulent channel flow. Int J Heat Fluid Flow, 2008, 29(4): 891–902

    Article  Google Scholar 

  14. Trujillo S M, Bogard D G, Ball K S. Turbulent boundary layer drag reduction using an oscillating wall. AIAA Paper, 1997, AIAA-1997-1870

  15. Choi K-S, DeBisschop J R, Clayton B R. Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J, 1998, 36(7): 1157–1163

    Article  ADS  Google Scholar 

  16. Choi K-S, Graham M. Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys Fluid, 1998, 10(1): 1–9

    Article  ADS  Google Scholar 

  17. Choi K-S, Clayton B R. The mechanism of turbulent drag reduction with wall oscillation. Int J Heat Fluid Flow, 2001, 22: 1–9

    Article  Google Scholar 

  18. Choi K-S. Near-wall structure of turbulent boundary layer with spanwise-wall oscillation. Phys Fluid, 2002, 14(7): 2530–2542

    Article  ADS  Google Scholar 

  19. Cicca G M D, Iuso G, Spazzini P G, et al. Particle image velocimetry investigation of a turbulent boundary layer manipulated by spanwise wall oscillations. J Fluid Mech, 2002, 467: 41–56

    MATH  ADS  Google Scholar 

  20. Iuso G, Cicca G M D, Onoratob M, et al. Velocity streak structure modifications induced by flow manipulation. Phys Fluid, 2003, 15(9): 2602–2612

    Article  ADS  Google Scholar 

  21. Ricco P, Wu S. On the effects of lateral wall oscillations on a turbulent boundary layer. Exp Thermal Fluid Sci, 2004, 29(1): 41–52

    Article  Google Scholar 

  22. Jimenez J, Pinelli A. Wall Turbulence: How it works and how to damp it. In: The 4th AIAA Shear Flow Control Conference. Snowmass, 1997, AIAA-97-2112

  23. Schoppa W, Hussain F. Formation of near-wall streamwise vortices by streak instability. Technical Report 98-3000, In: AIAA, 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, USA, 1998

  24. Schoppa W, Hussain F. Coherent structure dynamics in near-wall turbulence. Fluid Dynamics Res, 2000, 26: 118–139

    Article  MathSciNet  Google Scholar 

  25. Schoppa W, Hussain F. Coherent structure generation in near-wall turbulence. J Fluid Mech, 2002, 453: 57–108

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Bandyopadhyay P R. Stokes mechanism of drag reduction. J Appl Mech, 2006, 73: 483–489

    Article  MATH  Google Scholar 

  27. Martin M P, Piomelli U, Candler G V. Subgrid-scale models for compressible large-eddy simulation. Theorel Comput Fluid Dynamics, 2000, 13: 161–376

    Article  Google Scholar 

  28. Ducros F, Laporte F, Souléres T, et al. High-order fluxes for conservative skew-symmetric-like scheme in structured meches: Application to compressible flows. J Compt Phys, 2000, 116: 114–139

    Article  ADS  Google Scholar 

  29. Swanson R C, Turkel E. On central-difference and upwind schemes, J Compt Phys, 1992, 101: 292–306

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech, 1987, 177: 133–166

    Article  MATH  ADS  Google Scholar 

  31. Lenormand E, Sagaut P, Pbuoc L T. Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number. Int J Numer Methods Fluids, 2002, 32: 269–406

    Google Scholar 

  32. Jeong J, Hussain F. On the identification of a vortex. J Fluid Mech, 1994, 285: 69–94

    Article  ADS  MathSciNet  Google Scholar 

  33. Iritani Y, Kasagi N, Hirata M. Heat transfer mechanism and associated turbulence structure in the near-wall region of a turbulent Boundary Layer. In: Turbulent Shear Flows 4: Selected papers from the 4th International Symposium on Turbulent Shear, University of Karlsruhe. 1983. 223–234

  34. Kong H, Choi H, Lee J K. Direct numerical simulation of turbulent thermal boundary layers. Phys Fluids, 2000, 12(10): 2555–2568

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Fang.

Additional information

Supported by the Key Subjects of National Natural Science Foundation of China (Grant No. 10732090), the National Natural Science Foundation of China (Grant No. 50476004), and the 111 Project (Grant No. B08009)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., Lu, L. & Shao, L. Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation. Sci. China Ser. G-Phys. Mech. Astron. 52, 1233–1243 (2009). https://doi.org/10.1007/s11433-009-0165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0165-3

Keywords

Navigation