Skip to main content
Log in

Simulation of the Ising model, memory for Bell states and generation of four-atom entangled states in cavity QED

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

A scheme is proposed to simulate the Ising model and preserve the maximum entangled states (Bell states) in cavity quantum electrodynamics (QED) driven by a classical field with large detuning. In the strong driving and large-detuning regime, the effective Hamiltonian of the system is the same as the standard Ising model, and the scheme can also make the initial four Bell states of two atoms at the maximum entanglement all the time. So it is a simple memory for the maximal entangled states. The system is insensitive to the cavity decay and the thermal field and more immune to decoherence. These advantages can warrant the experimental feasibility of the current scheme. Furthermore, the genuine four-atom entanglement may be acquired via two Bell states through one-step implementation on four two-level atoms in the strong-driven model, and when two Greenberger-Horne-Zeilinger (GHZ) states are prepared in our scheme, the entangled cluster state may be acquired easily. The success probability for the scheme is 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, DiVincenzo D. Quantum information and computation. Nature, 2000, 404: 247–255

    Article  ADS  Google Scholar 

  2. Ding S C, Jin Z. Review on the study of entanglement in quantum computation speedup. Chin Sci Bull, 2007, 52(16): 2161–2166

    Article  Google Scholar 

  3. Ye M Y, Zhang Y S, Guo G C. Quantum entanglement and quantum operation. Sci China Ser G-Phys Mech Astron, 2008, 51(1): 14–21

    Article  MATH  ADS  Google Scholar 

  4. Qin M, Tao Y J, Hu M L, et al. Entanglement in spin-1 Heisenberg XY chain. Sci China Ser G-Phys Mech Astron, 2008, 51(7): 817–822

    Article  ADS  Google Scholar 

  5. Zhang Y, Long G L, Wu Y C, et al. Partial teleportation of entanglement through natural thermal entanglement in two-qubit Heisenberg XXX chain. Commun Theor Phys, 2007, 47(5): 787–790

    Article  Google Scholar 

  6. Zhang J F, Long G L, Zhang W, et al. Simulation of Heisenberg XY-interactions and realization of a perfect state transfer in spin chains using liquid nuclear magnetic resonance. Phys Rev A, 2005, 72(1): 012331-1–8

    ADS  Google Scholar 

  7. Chuang I L, Laflamme R, Shor P W, et al. Quantum computers quantum computers, factoring, and decoherence. Science, 1995, 270: 1633–1635

    Article  ADS  MathSciNet  Google Scholar 

  8. Unruh W G. Maintaining coherence in quantum computers. Phys Rev A, 1995, 51: 992–997

    Article  ADS  MathSciNet  Google Scholar 

  9. Bennett C H, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett, 1993, 70: 1895–1899

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Bennett C H, Wiesner T J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69: 2881–2884

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–331

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Bennett C H, Brassard G, Mermin N D. Quantum cryptography without Bell’s theorem. Phys Rev Lett, 1992, 68: 557–559

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Deutsch D, Ekert A. Quantum computation. Phys World, 1998, 11: 47–52

    Google Scholar 

  14. Raussendorf R, Briegel H J. A one-way quantum computer. Phys Rev Lett, 2001, 86: 5188–5191

    Article  ADS  Google Scholar 

  15. Li W L, Li C F, Guo G C. Probabilistic teleportation and entanglement matching. Phys Rev A, 2000, 61: 034301–034303

    Article  ADS  MathSciNet  Google Scholar 

  16. Gordon G, Rigolin G. Generalized quantum-state sharing. Phys Rev A, 2006, 73: 062316-1–4

    ADS  Google Scholar 

  17. Dziarmaga J. Dynamics of a quantum phase transition: Exact solution of the quantum ising model. Phys Rev Lett, 2005, 95: 245701-1–4

    Article  ADS  Google Scholar 

  18. Solano E, Agarwal G S, Walther H. Strong-driving-assisted multipartite entanglement in cavity QED. Phys Rev Lett, 2003, 90: 027903-1–4

    Article  ADS  Google Scholar 

  19. Julsgaard B, Sherson J, Cirac J I, et al. Experimental demonstration of quantum memory for light. Nature (London), 2004, 432: 482–486

    Article  ADS  Google Scholar 

  20. Julsgaard B, Kozhekin A, Polzik E S. Experimentally long-lived entanglement of two macroscopic objects. Nature (London), 2001, 413: 400–403

    Google Scholar 

  21. Man Z X, Xia Y J. Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. Eur Phys J D, 2007, 42(2): 333–340

    Article  ADS  MathSciNet  Google Scholar 

  22. Man Z X, Xia Y J. Genuine multiqubit entanglement and controlled teleportation. Phys Rev A, 2007, 75: 052306-1–5

    Article  ADS  Google Scholar 

  23. Yeo Y, Chua W K. Teleportation and dense coding with genuine multipartite entanglement. Phys Rev Lett, 2006, 86: 060502-1–4

    Google Scholar 

  24. Briegel H J, Raussendorf R. Persistent entanglement in arrays of interacting particles. Phys Rev Lett, 2001, 86: 910–913

    Article  ADS  Google Scholar 

  25. Duer W, Briegel H J. Stability of macroscopic entanglement under decoherence. Phys Rev Lett, 2004, 92: 180403-1–4

    ADS  Google Scholar 

  26. Zou X B, Mathis W. Generating a four-photon polarization-entangled cluster state. Phys Rev A, 2005, 71: 032308-1–4

    ADS  Google Scholar 

  27. Tokunaga Y, Yamamoto T, Koashi M, et al. Simple experimental scheme of preparing a four-photon entangled state for the teleportation-based realization of a linear optical controlled-NOT gate. Phys Rev A, 2005, 71: 030301-1–4

    ADS  Google Scholar 

  28. Walther P, Resch K J, Rudolph T, et al. Experimental one-way quantum computing. Nature, 2005, 434: 169–176

    Article  ADS  Google Scholar 

  29. Eibl M, Kiesel N, Bourennane M, et al. Experimental realization of a three-qubit entangled W state. Phys Rev Lett, 2004, 92: 077901-1–4

    Article  ADS  Google Scholar 

  30. Rauschenbeutel A, Nogues G, Osnaghi S, et al. Step-by-step engineered multiparticle entanglement. Science, 2000, 288: 2024–2028

    Article  ADS  Google Scholar 

  31. Zheng S B, Guo G C. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys Rev Lett, 2000, 85: 2392–2395

    Article  ADS  Google Scholar 

  32. Osnaghi S, Bertet P, Auffeves A, et al. Coherent control of an atomic collision in a cavity. Phys Rev Lett, 2001, 87: 037902-1–4

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YunJie Xia.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10774088) and the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Xia, Y., Man, Z. et al. Simulation of the Ising model, memory for Bell states and generation of four-atom entangled states in cavity QED. Sci. China Ser. G-Phys. Mech. Astron. 52, 700–707 (2009). https://doi.org/10.1007/s11433-009-0099-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0099-9

Keywords

Navigation