Skip to main content
Log in

Solution-phase synthesis of nanomaterials at low temperature

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

This paper reviews the solution-phase synthesis of nanoparticles via some routes at low temperatures, such as room temperature route, wave-assisted synthesis (γ-irradiation route and sonochemical route), directly heating at low temperatures, and hydrothermal/solvothermal methods. A number of strategies were developed to control the shape, the size, as well as the dispersion of nanostructures. Using diethylamine or n-butylamine as solvent, semiconductor nanorods were yielded. By the hydrothermal treatment of amorphous colloids, Bi2S3 nanorods and Se nanowires were obtained. CdS nanowires were prepared in the presence of polyacrylamide. ZnS nanowires were obtained using liquid crystal. The polymer poly (vinyl acetate) tubule acted as both nanoreactor and template for the CdSe nanowire growth. Assisted by the surfactant of sodium dodecyl benzenesulfonate (SDBS), nickel nanobelts were synthesized. In addition, Ag nanowires, Te nanotubes and ZnO nanorod arrays could be prepared without adding any additives or templates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xia Y N, Rogers J A, Paul K E, et al. Unconventional methods for fabricating and patterning nanostructures. Chem Rev, 1999, 99: 1823–1848

    Article  Google Scholar 

  2. Ahmadi T S, Wang Z L, Green T C, et al. Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996, 272: 1924–1926

    Article  ADS  Google Scholar 

  3. Puntes V F, Krishnan K M, Alivisatos A P. Colloidal nanocrystal shape and size control: The case of cobalt. Science, 2001, 291: 2115–2117

    Article  ADS  Google Scholar 

  4. Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc, 2001, 123: 1389–1395

    Article  Google Scholar 

  5. Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater, 2003, 15: 1957–1962

    Article  Google Scholar 

  6. Gates B, Yin Y D, Xia Y N. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10–30 nm. J Am Chem Soc, 2000, 122: 12582–12583

    Article  Google Scholar 

  7. Tang Z Y, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297: 237–240

    Article  ADS  Google Scholar 

  8. Mayers B, Xia Y N. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J Mater Chem, 2002, 12: 1875–1881

    Article  Google Scholar 

  9. Mayers B, Xia Y N. Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds. Adv Mater, 2002, 14: 279–282

    Article  Google Scholar 

  10. Bao J C, Tie C Y, Xu Z, et al. Template synthesis of an array of nickel nanotubules and its magnetic behavior. Adv Mater, 2001, 13: 1631

    Article  Google Scholar 

  11. Wang H X, Wu Y C, Zhang L D, et al. Fabrication and magnetic properties of Fe/Pt multilayered nanowires. Appl Phys Lett, 2006, 89: 232–508

    Google Scholar 

  12. Coombs N, Khushalani D, Oliver S, et al. Blueprints for inorganic materials with natural form: Inorganic liquid crystals and a language of inorganic shape. J Chem Soc Dalton Trans, 1997, (21): 3941–3952

  13. Pradhan B K, Kyotani T, Tomita A. Nickel nanowires of 4 nm diameter in the cavity of carbon nanotubes. Chem Commun, 1999, (14): 1317–1318

  14. Sloan J, Wright D M, Woo H G, et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem Commun, 1999, (8): 699–700

  15. Govindaraj A, Satishkumar B C, Nath M, et al. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem Mater, 2000, 12: 202–205

    Article  Google Scholar 

  16. Braun P V, Osenar P, Stupp S I. Semiconducting superlattices templated by molecular assemblies. Nature, 1996, 380: 325–328

    Article  ADS  Google Scholar 

  17. Motte L, Billoudet F, Pileni M P. Self-assembled monolayer of nanosized particles differing by their sizes. J Phys Chem, 1995, 99: 16425–16429

    Article  Google Scholar 

  18. Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun, 2001, (7): 617–618

  19. Gao F, Lu Q Y, Zhao D Y. Controllable assembly of ordered semiconductor Ag2S nanostructures. Nano Lett, 2003, 3: 85–88

    Article  ADS  Google Scholar 

  20. Puntes V F, Krishnan K M, Alivisatos A P. Colloidal nanocrystal shape and size control: The case of cobalt. Science, 2001, 291: 2115–2117

    Article  ADS  Google Scholar 

  21. Jun Y W, Lee S M, Kang N J, et al. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J Am Chem Soc, 2001, 123: 5150–5151

    Article  Google Scholar 

  22. Platonova O A, Bronstein L M, Solodovnikov S P, et al. Cobalt nanoparticles in block copolymer micelles: Preparation and properties. Colloid Polym Sci, 1997, 275: 426–431

    Article  Google Scholar 

  23. Caswell K K, Bender C M, Murphy C J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett, 2003, 3: 667–669

    Article  ADS  Google Scholar 

  24. Zhang W X, Zhang X M, Qian Y T, et al. A redox reaction to synthesize nanocrystalline Cu2-xSe in aqueous solution. Inorg Chem, 2000, 39: 1838–1839

    Article  Google Scholar 

  25. Wang W Z, Geng Y, Qian Y T, et al. A novel mild route to nanocrystalline selenides at room temperature. J Am Chem Soc, 1999, 121: 4062–4063

    Article  Google Scholar 

  26. Zhao Q R, Xie Y, Dong T, et al. Oxidation-crystallization process of colloids: An effective approach for the morphology controllable synthesis of SnO2 hollow spheres and rod bundles. J Phys Chem C, 2007, 111: 11598–11603

    Article  Google Scholar 

  27. Marignier J L, Belloni J, Delcourt M O, et al. Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction. Nature, 1985, 317: 344–345

    Article  ADS  Google Scholar 

  28. Zhu Y J, Qian Y T, Zhang M W, et al. Preparation of nanocrystalline silver powders by γ-ray radiation combined with hydrothermal treatment. Mater Lett, 1993, 17: 314–318

    Article  Google Scholar 

  29. Zhu Y J, Qian Y T, Zhang M W, et al. γ radiation-hydrothermal synthesis and characterization of nanocrystalline copper powders. Mat Sci Eng B, 1994, 23: 116

    Article  Google Scholar 

  30. Liu Y P, Qian Y T, Zhang M W, et al. Preparation of nanocrystalline indium powders by use of γ-ray radiation. Mater Lett, 1996, 26: 81–83

    Article  MATH  Google Scholar 

  31. Zhu Y J, Qian Y T, Huang H, et al. Preparation of nanometer-size selenium powders of uniform particle size by γ-irradiation. Mater Lett, 1996, 28: 119–122

    Article  Google Scholar 

  32. Zhu Y J, Qian Y T, Huang H, et al. Preparation of ultrafine tellurium powders by the γ-radiation method at room temperature. J Mater Sci Lett, 1996, 15: 1700–1701

    Article  Google Scholar 

  33. Jiang X C, Xie Y, Qian Y T, et al. Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by γ-irradiation. Chem Mater, 2001, 13: 1213–1218

    Article  Google Scholar 

  34. Zhu Y J, Qian Y T, Li X J, et al. γ-Radiation synthesis and characterization of polyacrylamide-silver nanocomposites. Chem Commun, 1997, (10): 1081–1082

  35. Xie Y, Qiao Z P, Qian Y T, et al. γ-Irradiation route to semiconductor/ polymer nanocable fabrication. Adv Mater, 1999, 11: 1512–1514

    Article  Google Scholar 

  36. Li B, Xie Y, Qian Y T, et al. Sonochemical synthesis of nanocrystalline copper tellurides Cu7Te4 and Cu4Te3 at room temperature. Chem Mater, 2000, 12: 2614–2616

    Article  Google Scholar 

  37. Zheng X W, Xie Y, Zhu L Y, et al. Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution. Ultrason Sonochem, 2002, 9: 311–316

    Article  Google Scholar 

  38. Huang J X, Xie Y, Qian Y T, et al. In-situ source-template-interface reaction route to semiconductor CdS submicrometer hollow spheres. Adv Mater, 2000, 12: 808–811

    Article  Google Scholar 

  39. Liu Z P, Liang J B, Qian Y T, et al. A facile chemical route to semiconductor metal sulfide nanocrystal superlattices. Chem Commun, 2004, (24): 2724–2725

  40. Liu Z P, Xu D, Qian Y T, et al. Growth of Cu2S ultrathin nanowires in a binary surfactant solvent. J Phys Chem B, 2005, 109: 10699–10704

    Article  Google Scholar 

  41. Jiang X C, Xie Y, Qian Y T, et al. Synthesis of novel nickel sulfide layer-rolled structures. Adv Mater, 2001, 13, 1278–1281

    Article  Google Scholar 

  42. Cao X B, Xie Y, Li L Y. Development of one-dimensional nanostructures through the crystallization of amorphous colloids. J Colloid Interface Sci, 2004, 273: 175–180

    Article  Google Scholar 

  43. Qian Y T, Chen Q W, Chen Z Y, et al. Preparation of ultrafine powders of TiO2 by hydrothermal H2O2 oxidation starting from metallic Ti. J Mater Chem, 1993, 3: 203–205

    Article  Google Scholar 

  44. Wang Z H, Liu J W, Qian Y T, et al. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem Eur J, 2005, 11: 160–163

    Article  Google Scholar 

  45. Liu Z P, Li S, Qian Y T, et al, Shape-controlled synthesis and growth of one-dimensional nanostructures of trigonal tellurium. New J Chem, 2003, 27: 1748–1752

    Article  Google Scholar 

  46. Mo M S, Zeng J H, Qian Y T, et al. Controlled hydrothermal synthesis of thin single-crystal tellurium nanobelts and nanotubes. Adv Mater, 2002, 14: 1658–1662

    Article  Google Scholar 

  47. Lu J, Qi P F, Qian Y T, et al. Metastable MnS crystallites through solvothermal synthesis. Chem Mater, 2001, 13: 2169–2172

    Article  Google Scholar 

  48. Liu Z P, Peng S, Qian Y T, et al. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process. Adv Mater, 2003, 15: 936–940

    Article  Google Scholar 

  49. Tang Q, Zhou W J, Qian Y T, et al. A template-free aqueous route to ZnO nanorod arrays with high optical property. Chem Commun, 2004, (21): 712–713

  50. Yu S H, Wu Y S, Qian Y T, et al. A novel solventothermal synthetic route to nanocrystalline CdE (E = S, Se, Te) and morphological control. Chem Mater, 1998, 10: 2309–2312

    Article  Google Scholar 

  51. Yang J, Yu S H, Qian Y T, et al. General synthesis of semiconductor chalcogenide nanorods by using the monodentate ligand n-butylamine as a shape controller. Angew Chem Int Ed, 2002, 41: 4697–4700

    Article  Google Scholar 

  52. Xiong S L, Shen J M, Qian Y T, et al. A precursor-based route to ZnSe nanowire bundles. Adv Funct Mater, 2005, 15: 1787–1792

    Article  Google Scholar 

  53. Liu Z P, Li S, Qian Y T, et al. Complex-surfactant-assisted hydrothermal route to ferromagnetic nickel nanobelts. Adv Mater, 2003, 15: 1946–1948

    Article  Google Scholar 

  54. Liu Z P, Yang Y, Qian Y T, et al. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. J Phys Chem B, 2003, 107: 12658–12611

    Article  Google Scholar 

  55. Xiong Y J, Xie Y, Li Z Q, et al. Aqueous-solution growth of GaP and InP nanowires: A general route to phosphide, oxide, sulfide, and tungstate nanowires. Chem Eur J, 2004, 10: 654–660

    Article  Google Scholar 

  56. Zhan J H, Yang X G, Qian Y T, et al. Polymer-controlled growth of CdS nanowires. Adv Mater, 2000, 12: 1348–1351

    Article  Google Scholar 

  57. Yang Q, Qian Y T, Tang K B, et al. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires. J Phys Chem B, 2002,106: 9227–9230

    Article  Google Scholar 

  58. Yu D B, Wang D B, Qian Y T, et al. Synthesis of closed PbS nanowires with regular geometric morphologies. J Mater Chem, 2002, 12: 403–405

    Article  Google Scholar 

  59. Zeng J H, Yang J, Qian Y T, et al. Nanocomposite of CdS particles in polymer rods fabricated by a novel hydrothermal polymerization and simultaneous sulfidation technique. Chem Commun, 2001, (15): 1332–1333

  60. Yu S H, Cui X J, Li L L, et al. From starch to metal/carbon hybrid nanostructures: Hydrothermal metal-catalyzed carbonization. Adv Mater, 2004, 16: 1636–1640

    Article  Google Scholar 

  61. Luo L B, Yu S H, Qian H S, et al. Large-scale fabrication of flexible silver/cross-linked poly(vinyl alcohol) coaxial nanocables by a facile solution approach. J Am Chem Soc, 2005, 127: 2822–2823

    Article  Google Scholar 

  62. Xiong S L, Fei L F, Qian Y T, et al. Preparation of semiconductor/ polymer coaxial nanocables by a facile solution process. Eur J Inorg Chem, 2006, 2006(1): 207–212

    Article  Google Scholar 

  63. Luo L B, Yu S H, Qian H S, et al. Large-scale synthesis of flexible gold/cross-linked-PVA sub-microcables and cross-linked-PVA tubes/ fibers by using templating approaches based on silver/cross-linked-PVA sub-microcables. Chem Eur J, 2006, 12: 3320–3324

    Article  Google Scholar 

  64. Ma D K, Zhang M, Qian Y T, et al. Fabrication and characterization of ultralong Ag/C nanocables, carbonaceous nanotubes, and chainlike β-Ag2Se nanorods inside carbonaceous nanotubes. Inorg Chem, 2006, 45: 4845–4849

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiTai Qian.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2005CB623601) and the National Natural Science Foundation of China (Grant No. 20431020)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Qian, Y. Solution-phase synthesis of nanomaterials at low temperature. Sci. China Ser. G-Phys. Mech. Astron. 52, 13–20 (2009). https://doi.org/10.1007/s11433-009-0009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0009-1

Keywords

Navigation