Skip to main content
Log in

Advances in high-resolution nuclear magnetic resonance methods in inhomogeneous magnetic fields using intermolecular multiple quantum coherences

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Strong and extremely homogeneous static magnetic field is usually required for high-resolution nuclear magnetic resonance (NMR). However, in the cases of in vivo and so on, the magnetic field inhomogeneity owing to magnetic susceptibility variation in samples is unavoidable and hard to eliminate by conventional methods such as shimming. Recently, intermolecular multiple quantum coherences (iMQCs) have been employed to eliminate inhomogeneous broadening and obtain high-resolution NMR spectra, especially for in vivo samples. Compared to other high-resolution NMR methods, iMQC method exhibits its unique feature and advantage. It simultaneously holds information of chemical shifts, multiplet structures, coupling constants, and relative peak areas. All the information is often used to analyze and characterize molecular structures in conventional one-dimensional NMR spectroscopy. In this work, recent technical developments including our results in this field are summarized; the high-resolution mechanism is analyzed and comparison with other methods based on interactions between spins is made; comments on the current situation and outlook on the research directions are also made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakellariou D, Meriles C A, Pines A. Advances in ex-situ nuclear magnetic resonance. C R Phys, 2004, 5(3): 337–347

    Article  ADS  Google Scholar 

  2. Faber C, Pracht E, Haase A. Resolution enhancement in in vivo NMR spectroscopy: Detection of intermolecular zero-quantum coherences. J Magn Reson, 2003, 161(2): 265–274

    Article  ADS  Google Scholar 

  3. Perlo J, Casanova F, Blumich B. Ex situ NMR in highly homogeneous fields: 1H spectroscopy. Science, 2007, 315(5815): 1110–1112

    Article  ADS  Google Scholar 

  4. Lacey M E, Subramanian R, Olson D L, et al. High-resolution NMR spectroscopy of sample volumes from 1 nL to 10 μL. Chem Rev, 1999, 99(10): 3133–3152

    Article  Google Scholar 

  5. Metz K R, Lam M M, Webb A G. Reference deconvolution: A simple and effective method for resolution enhancement in nuclear magnetic-resonance spectroscopy. Concepts Magn Reson, 2000, 12(1):21–42

    Article  Google Scholar 

  6. Morris G A, Barjat H, Horne T J. Reference deconvolution methods. Prog Nucl Magn Reson Spectrosc, 1997, 31: 197–257

    Article  Google Scholar 

  7. Weitekamp D P, Garbow J R, Murdoch J B, et al. High-resolution NMR spectra in inhomogeneous magnetic field: Application of total spin coherence transfer echoes. J Am Chem Soc, 1981, 103(12): 3578–3579

    Article  Google Scholar 

  8. Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press, 1989

    Google Scholar 

  9. De Graaf R A, Rothman D L, Behar K L. High resolution NMR spectroscopy of rat brain in vivo through indirect zero-quantumcoherence detection. J Magn Reson, 2007, 187(2): 320–326

    Article  ADS  Google Scholar 

  10. Perlo J, Demas V, Casanova F, et al. High-resolution NMR spectroscopy with a portable single-sided sensor. Science, 2005, 308(5726): 1279

    Article  Google Scholar 

  11. Topgaard D, Martin R W, Sakellariou D, et al. “Shim pulses” for NMR spectroscopy and imaging. Proc Natl Acad Sci USA, 2004, 101(51): 17576–17581

    Article  ADS  Google Scholar 

  12. Meriles C A, Sakellariou D, Pines A. Broadband phase modulation by adiabatic pulses. J Magn Reson, 2003, 164(1): 177–181

    Article  ADS  Google Scholar 

  13. Sakellariou D, Meriles C A, Moule A, et al. Variable rotation composite pulses for high resolution nuclear magnetic resonance using inhomogeneous magnetic and radiofrequency fields. Chem Phys Lett, 2002, 363(1–2): 25–33

    Article  ADS  Google Scholar 

  14. Heise H, Sakellariou D, Meriles C A, et al. Two-dimensional high-resolution NMR spectra in matched B 0 and B 1 field gradients. J Magn Reson, 2002, 156(1): 146–151

    Article  ADS  Google Scholar 

  15. Meriles C A, Sakellariou D, Heise H, et al. Approach to high-resolution ex situ NMR spectroscopy. Science, 2001, 293(5527): 82–85

    Article  Google Scholar 

  16. Balbach J J, Conradi M S, Cistola D P, et al. High-resolution NMR in inhomogeneous fields. Chem Phys Lett, 1997, 277(4): 367–374

    Article  ADS  Google Scholar 

  17. Shapira B, Frydman L. Spatial encoding and the acquisition of high-resolution NMR spectra in inhomogeneous magnetic fields. J Am Chem Soc, 2004, 126(23): 7184–7185

    Article  Google Scholar 

  18. Shapira B, Frydman L. Spatially encoded pulse sequences for the acquisition of high resolution NMR spectra in inhomogeneous fields. J Magn Reson, 2006, 182(1): 12–21

    Article  ADS  Google Scholar 

  19. Halse M E, Callaghan P T. Imaged deconvolution: A method for extracting high-resolution NMR spectra from inhomogeneous fields. J Magn Reson, 2007, 185(1): 130–137

    Article  ADS  Google Scholar 

  20. Pryor B, Khaneja N. Fourier decompositions and pulse sequence design algorithms for nuclear magnetic resonance in inhomogeneous fields. J Chem Phys, 2006, 125(19): 194111

    Google Scholar 

  21. Sersa I, Macura S. Spectral resolution enhancement by chemical shift imaging. Magn Reson Imaging, 2007, 25(2): 250–258

    Article  Google Scholar 

  22. Vathyam S, Lee S, Warren W S. Homogeneous NMR spectra in inhomogeneous fields. Science, 1996, 272(5258): 92–96

    Article  ADS  Google Scholar 

  23. Lin Y Y, Ahn S D, Murali N, et al. High-resolution, >1GHz NMR in unstable magnetic fields. Phys Rev Lett, 2000, 85(17): 3732–3735

    Article  ADS  Google Scholar 

  24. Balla D, Faber C. Solvent suppression in liquid state NMR with selective intermolecular zero-quantum coherences. Chem Phys Lett, 2004, 393(4–6): 464–469

    Article  ADS  Google Scholar 

  25. Chen Z, Chen Z W, Zhong J H. High-resolution NMR spectra in inhomogeneous fields via IDEAL (intermolecular dipolar-interaction enhanced all lines) method. J Am Chem Soc, 2004, 126(2): 446–447

    Article  MathSciNet  Google Scholar 

  26. Chen Z, Hou T, Chen Z W, et al. Selective intermolecular zero-quantum coherence in high-resolution NMR under inhomogeneous fields. Chem Phys Lett, 2004, 386(1–3): 200–205

    Article  ADS  Google Scholar 

  27. Galiana G, Branca R T, Warren W S. Ultrafast intermolecular zero quantum spectroscopy. J Am Chem Soc, 2005, 127(50): 17574–17575

    Article  Google Scholar 

  28. Jiang B, Liu H L, Liu M L, et al. Multiple quantum correlated spectroscopy revamped by asymmetric z-gradient echo detection signal intensity as a function of the read pulse flip angle as verified by heteronuclear 1H/31P experiments. J Chem Phys, 2007, 126(5): 054502

    Google Scholar 

  29. Deville G, Bernier M, Delrieux J M. NMR multiple echoes observed in solid 3He. Phys Rev B, 1979, 19: 5666–5688

    Article  ADS  Google Scholar 

  30. He Q H, Richter W, Vathyam S, et al. Intermolecular multiple-quantum coherences and cross correlations in solution nuclear magnetic resonance. J Chem Phys, 1993, 98(9): 6779–6800

    Article  ADS  Google Scholar 

  31. Warren W S, Richter W, Andreotti A H, et al. Generation of impossible cross-peaks between bulk water and biomolecules in solution NMR. Science, 1993, 262(5142): 2005–2009

    Article  ADS  Google Scholar 

  32. Warren W S, Lee S, Richter W, et al. Correcting the classical dipolar demagnetizing field in solution NMR. Chem Phys Lett, 1995, 247(3):207–214

    Article  ADS  Google Scholar 

  33. Lee S, Richter W, Vathyam S, et al. Quantum treatment of the effects of dipole-dipole interactions in liquid nuclear magnetic resonance. J Chem Phys, 1996, 105(3): 874–900

    Article  ADS  Google Scholar 

  34. Mao X A, Ye C H. Line shapes of strongly radiation-damped nuclear magnetic resonance signals. J Chem Phys, 1993, 99(10): 7455–7462

    Article  ADS  Google Scholar 

  35. Mao X A, Ye C H. Understanding radiation damping in a simple way. Concepts Magn Reson, 1997, 9(3): 173–187

    Article  Google Scholar 

  36. Jeener J. Equivalence between the “classical” and the “Warren” approaches for the effects of long range dipolar couplings in liquid nuclear magnetic resonance. J Chem Phys, 2000, 112(11): 5091–5094

    Article  ADS  Google Scholar 

  37. Kimmich R, Ardelean I. Intermolecular multiple-quantum coherence transfer echoes and multiple echoes in nuclear magnetic resonance. J Chem Phys, 1999, 110(8): 3708–3713

    Article  ADS  Google Scholar 

  38. Bowtell R, Bowley R M, Glover P. Multiple spin echoes in liquids in a high magnetic field. J Magn Reson, 1990, 88(3): 643–651

    Google Scholar 

  39. Bowtell R. Indirect detection via the dipolar demagnetizing field. J Magn Reson, 1992, 100: 1–17

    Google Scholar 

  40. Levitt M H. Demagnetization field effects in two-dimensional solution NMR. Concepts Magn Reson, 1996, 8(2): 77–103

    Article  ADS  Google Scholar 

  41. Richter W, Lee S H, Warren W S, et al. Imaging with intermolecular multiple-quantum coherences in solution nuclear magnetic resonance. Science, 1995, 267(5198): 654–657

    Article  ADS  Google Scholar 

  42. Faber C. Solvent-localized NMR spectroscopy using the distant dipolar field: A method for NMR separations with a single gradient. J Magn Reson, 2005, 176(1): 120–124

    Article  ADS  MathSciNet  Google Scholar 

  43. Enss T, Ahn S, Warren W S. Visualizing the dipolar field in solution NMR and MR imaging: Three-dimensional structure simulations. Chem Phys Lett, 1999, 305(1–2): 101–108

    Article  ADS  Google Scholar 

  44. Garrett-Roe S, Warren W S. Numerical studies of intermolecular multiple quantum coherences: High-resolution NMR in inhomogeneous fields and contrast enhancement in MRI. J Magn Reson, 2000, 146(1): 1–13

    Article  ADS  Google Scholar 

  45. Cai C B, Chen Z, Cai S H, et al. A simulation algorithm based on Bloch equations and product operator matrix: Application to dipolar and scalar couplings. J Magn Reson, 2005, 172(2): 242–253

    Article  ADS  Google Scholar 

  46. Vlassenbroek A, Jeener J, Broekaert P. Radiation damping in high resolution liquid NMR: A simulation study. J Chem Phys, 1995, 103(14): 5886–5897

    Article  ADS  Google Scholar 

  47. Price W S, Elwinger F, Vigouroux C, et al. PGSE-WATERGATE, a new tool for NMR diffusion-based studies of ligand-macromolecule binding. Magn Reson Chem, 2002, 40(6): 391–395

    Article  Google Scholar 

  48. Zhong J H, Chen Z, Kwok E. In vivo intermolecular double-quantum imaging on a clinical 1.5 T MR scanner. Magn Reson Med, 2000, 43(3): 335–341

    Article  Google Scholar 

  49. Lin M J, Chen X, Chen Z W, et al. A new method for high-resolution NMR spectra in inhomogeneous fields with efficient solvent suppression. Chin J Chem, 2007, 25(6): 751–755

    Article  Google Scholar 

  50. Liu M L, Mao X A, Ye C H, et al. Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson, 1998, 132(1): 125–129

    Article  ADS  Google Scholar 

  51. Chen X, Lin M J, Chen Z, et al. High-resolution intermolecular zero-quantum coherence spectroscopy under inhomogeneous fields with effective solvent suppression. Phys Chem Chem Phys, 2007, 9(47): 6231–6240

    Article  MathSciNet  Google Scholar 

  52. Balla D Z, Melkus G, Faber C. Spatially localized intermolecular zero-quantum coherence spectroscopy for in vivo applications. Magn Reson Med, 2006, 56(4): 745–753

    Article  Google Scholar 

  53. Warren W S, Ahn S, Mescher M, et al. MR imaging contrast enhancement based on intermolecular zero quantum coherences. Science, 1998, 281(5374): 247–251

    Article  ADS  Google Scholar 

  54. Bowtell R, Gutteridge S, Ramanathan C. Imaging the long-range dipolar field in structured liquid state samples. J Magn Reson, 2001, 150(2): 147–155

    Article  ADS  Google Scholar 

  55. Hahn E L. Spin echoes. Phys Rev, 1950, 80(4): 580–594

    Article  MATH  ADS  Google Scholar 

  56. Carr H Y, Purcell E M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev, 1954, 94(3): 630–638

    Article  ADS  Google Scholar 

  57. Munowitz M, Pines A. Multiple-quantum nuclear magnetic resonance spectroscopy. Science, 1986, 233(4763): 525–531

    Article  ADS  Google Scholar 

  58. Fang K, Zhou J, Lei H, et al. Study of diamond film by dynamic nuclear polarization-enhanced 13C nuclear magnetic resonance spectroscopy. Appl Magn Reson, 2005, 29(2): 211–219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Chen.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 20573084, 10575085 and 10774125)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Lin, M., Chen, X. et al. Advances in high-resolution nuclear magnetic resonance methods in inhomogeneous magnetic fields using intermolecular multiple quantum coherences. Sci. China Ser. G-Phys. Mech. Astron. 52, 58–69 (2009). https://doi.org/10.1007/s11433-009-0001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-009-0001-9

Keywords

Navigation