Skip to main content
Log in

Long lifetime of nanobubbles due to high inner density

  • Published:
Science in China Series G: Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

As predicted by classical macroscopic theory, the lifetime for nanoscale gas bubbles is extremely short. However, stable gas nanobubbles have been experimentally observed in recent years. In this report, we theoretically show that, if the inner density of gas bubbles is sufficiently high, the lifetime of nanobubbles can increase by at least 4 orders of magnitude, and even approaches the timescale for experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker J L, Claesson P M, Attard P. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. J Phys Chem, 1994, 98(34): 8468–8480

    Article  Google Scholar 

  2. Tyrrell J W G, Attard P. Atomic force microscope images of nanobubbles on a hydrophobic surface and corresponding force-separation data. Langmuir, 2002, 18(1): 160–167

    Article  Google Scholar 

  3. Carambassis A, Jonker L C, Attard P, et al. Forces measured between hydrophobic surfaces due to a submicroscopic bridging bubble. Phys Rev Lett, 1998, 80(24): 5357–5360

    Article  ADS  Google Scholar 

  4. Nguyen A V, Evans G M, Nalaskowski J, et al. Hydrodynamic interaction between an air bubble and a particle: Atomic force microscopy measurements. Exp Therm Fluid Sci, 2004, 28(5): 387–394

    Article  Google Scholar 

  5. Du Z P, Bilbao-Montoya M P, Binks B P, et al. Outstanding stability of particle-stabilized bubbles. Langmuir 2003, 19(8): 3106–3108

    Article  Google Scholar 

  6. Ralston J, Fornasiero D, Mishchuk N. The hydrophobic force in flotation—A critique. Colloids Surf A, 2001, 192(1–3): 39–51

    Article  Google Scholar 

  7. Nguyen A V, Nalaskowski J, Miller J D. The dynamic nature of contact angles as measured by atomic force microscopy. J Colloid Interface Sci, 2003, 262(1): 303–306

    Article  Google Scholar 

  8. Stockelhuber K W, Radoev B, Wenger A, et al. Rupture of wetting films caused by nanobubbles. Langmuir, 2004, 20(1): 164–168

    Article  Google Scholar 

  9. Vinogradova O I. Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir, 1995, 11(6): 2213–2220

    Article  Google Scholar 

  10. Zhu Y X, Granick S. Rate-dependent slip of newtonian liquid at smooth surfaces. Phys Rev Lett, 2001, 87(9): 0961051–0961054

    Google Scholar 

  11. de Gennes P G. On fluid/wall slippage. Langmuir, 2002, 18(9): 3413–3414

    Article  Google Scholar 

  12. Lauga E, Brenner M P. Dynamic mechanisms for apparent slip on hydrophobic surfaces. Phys Rev E, 2004, 70(2): 0263111–0263117

    Google Scholar 

  13. Priezjev N V, Darhuber A A, Troian S M. Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys Rev E, 2005, 71(4): 0416081–04160811

    Google Scholar 

  14. Ishida N, Inoue T, Miyahara M, et al. Nanobubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir, 2000, 16(16): 6377–6380

    Article  Google Scholar 

  15. Lou S T, Ouyang Z Q, Zhang Y, et al. Nanobubbles on solid surface imaged by atomic force microscopy. J. Vac. Sci. Technol. B 2000, 18(5): 2573–2575

    Article  Google Scholar 

  16. Lou S T, Gao J X, Xiao X D, et al. Nanobubbles at the liquid/solid interface studied by atomic force microscopy. Chin Phys, 2001, 10: S108–S110

    Google Scholar 

  17. Tyrrell J W G, Attard P. Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett, 2001, 87(17): 1761041–1761044

    Google Scholar 

  18. Yang J W, Duan J M, Fornasiero D, et al. Very small bubble formation at the solid-water interface. J Phys Chem B, 2003, 107(25): 6139–6147

    Article  Google Scholar 

  19. Attard P. Nanobubbles and the hydrophobic attraction. Adv Colloid Interface Sci, 2003, 104(1–3): 75–91

    Article  Google Scholar 

  20. Agrawal A, Park J, Ryu D Y, et al. Controlling the location and spatial extent of nanobubbles using hydrophobically nanopatterned surfaces. Nano Lett, 2005, 5(9): 1751–1756

    Article  Google Scholar 

  21. Zhang L J, Zhang Y, Zhang X H, et al. Electrochemically controlled formation and growth of hydrogen nanobubbles. Langmuir, 2006, 22(19): 8109–8113

    Article  Google Scholar 

  22. Zhang X H, Maeda N, Craig V S J. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions. Langmuir, 2006, 22(11): 5025–5035

    Article  Google Scholar 

  23. Switkes M, Ruberti J W. Rapid cryofixation/freeze fracture for the study of nanobubbles at solid-liquid interfaces. Appl Phys Lett, 2004, 84(23): 4759–4761

    Article  ADS  Google Scholar 

  24. Steitz R, Gutberlet T, Hauss T, et al. Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir, 2003, 19(6): 2409–2418

    Article  Google Scholar 

  25. Ljunggren S, Eriksson J C. The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction. Colloids Surf A, 1997, 129/130: 151–155

    Article  Google Scholar 

  26. Bunkin N F, Kochergin A V, Lobeyev A V, et al. Existence of charged submicrobubble clusters in polar liquids as revealed by correlation between optical cavitation and electrical conductivity. Colloids Surf A, 1996, 110(2): 207–212

    Article  Google Scholar 

  27. Simonsen A C, Hansen P L, KlÖsgen B. Nanobubbles give evidence of incomplete wetting at a hydrophobic interface. J Colloid Interface Sci, 2004, 273(1): 291–299

    Article  Google Scholar 

  28. Fang H P, Hu J. Molecular dynamics simulation studies on some topics of water molecules on hydrophobic surfaces. Nucl Sci Tech, 2006, 17(2): 71–77

    Article  Google Scholar 

  29. Wang C L, Zhang L J, Hu J, et al. The density of nanoscale gas-bubble at liquid/solid interface studied by molecular dynamics simulation. Chin Phys (in press)

  30. Epstein P S, Plesset M S. On the stability of gas bubbles in liquid-gas solutions. J Chem Phys, 1950, 18(11): 1505–1509

    Article  ADS  Google Scholar 

  31. Poling B E, Prausnitz J M, O’Connell J P. The Properties of Gases and Liquids. New York: McGraw-Hill, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang HaiPing or Hu Jun.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 10474109 and 10674146)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Chen, H., Li, Z. et al. Long lifetime of nanobubbles due to high inner density. Sci. China Ser. G-Phys. Mech. Astron. 51, 219–224 (2008). https://doi.org/10.1007/s11433-008-0026-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-008-0026-5

Keywords

Navigation