Skip to main content
Log in

Abstract

By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Majumdar P, Littlewood P. Magnetoresistance in Mn Pyrochlore: Electrical transport in a low carrier density ferromagnet. Phys Rev Lett, 1998, 81: 1314–1317

    Article  ADS  Google Scholar 

  2. Shimikawa Y, Kubo Y, Manako T. Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure. Nature, 1996, 379: 53–55

    Article  ADS  Google Scholar 

  3. Subramanian M A, Toby B H, Ramirez A P, et al. Colossal magnetoresistance without Mn3+/Mn4+ double exchange in the stoichiometric pyrochlore T12Mn2O7. Science, 1997, 273: 81–84

    ADS  Google Scholar 

  4. Ramirez A P, Subramanian M A. Large enhancement of magnetoresistance in T12Mn2O7: Pyrochlore versus perovskite. Science, 1997, 277: 546–549

    Article  Google Scholar 

  5. Martinez B, Senis R, Fontcuberta F, et al. Carrier density dependence of magnetoresistance in T12Mn2−x RuxO7 pyrochlores. Phys Rev Lett, 1999, 83: 2022–2025

    Article  ADS  Google Scholar 

  6. Kagan M Y, Khomskii D I, Mostovoy M V. Double-exchange model: Phase separation versus canted spins. Eur Phys J, 1999, 12: 1–10

    Google Scholar 

  7. Moreo A, Yunoki S, Dagotto E. Phase separation scenario for manganese oxides and related materials. Science, 1999, 283: 2034–2040

    Article  Google Scholar 

  8. Coey J M D, Viret M, Ranno L, et al. Electron localization in mixed-valence manganites. Phys Rev Lett, 1995, 75: 3910–3913

    Article  ADS  Google Scholar 

  9. Allodi G, Genzi R, Guidi G. 139La NMR in lanthanum manganites: Indication of the presence of magnetic polarons from spectra and nuclear relaxations. Phys Rev B, 1998, 57: 1024–1034

    Article  ADS  Google Scholar 

  10. Neumeier J J, Cohn J L. Possible signatures of magnetic phase segregation in electron-doped antiferromagnetic CaMnO3. Phys Rev B, 2000, 61: 14319–14322

    Article  ADS  Google Scholar 

  11. Cohn J L, Neumeier J J. Heat conduction and magnetic phase behavior in electron-doped Ca1−x LaxMnO3 (0⩽x⩽0.2). Phys Rev B, 2002, 66: 100404–100407

    Article  ADS  Google Scholar 

  12. Golnik A, Ginter J, Gaj J A. Magnetic polarons in exciton luminescence of Cd1−x MnxTe. J Phys C, 1983, 16: 6073–6079

    Article  ADS  Google Scholar 

  13. Meskine H, Saha-Dasgupta T, Satpathy S. Does the self-trapped magnetic polaron exist in electron-doped manganites? Phys Rev Lett, 2004, 92: 56401–56404

    Article  ADS  Google Scholar 

  14. Dietl T, Spalek J. Effect of fluctuations of magnetization on the bound magnetic polaron: Comparison with experiment. Phys Rev Lett, 1982, 48: 355–358

    Article  ADS  Google Scholar 

  15. Calderon M J, Brey L, Littlewood P B. Stability and dynamics of free magnetic polarons. Phys Rev B, 2000, 62: 3368–3371

    Article  ADS  Google Scholar 

  16. Liu T, Feng M, Wang K L. A variational study of the self-trapped magnetic polaron formation in double-exchange model. Phys Lett A, 2005, 337: 487–484

    Article  ADS  Google Scholar 

  17. Barisic O S. Variational study of the Holstein polaron. Phys Rev B, 2002, 65: 144301

    Google Scholar 

  18. Wang K L, Chen Q H, Wan S J. A concise approach to the calculation of the polaron ground-state energy. Phys Lett A, 1994, 185: 216–220

    Article  ADS  Google Scholar 

  19. Wang K L, Wang Y, Wan S L. General properties of a polaron in motion. Phys Rev B, 1996, 54: 12852–12858

    Article  Google Scholar 

  20. Han R S, Lin Z J, Wang K L. Exact solutions for the two-site Holstein model. Phys Rev B, 2002, 65: 174303

    Google Scholar 

  21. Liu W M, Wu B, Zhou X, et al. Interacting domain walls in an easy plane ferromagnet. Phys Rev B, 2002, 65: 172416

    Google Scholar 

  22. He P B, Liu W M. Nonlinear magnetization dynamics in a ferromagnetic nanowire with spin current. Phys Rev B, 2005, 72: 064410

    Google Scholar 

  23. Fuentes M A, Maniadis P, Kalosakas G, et al. Multipeaked polarons in soft potentials. Phys Rev E, 2004, 70: 025601

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Zhang, H., Feng, M. et al. A study of two-dimensional magnetic polaron. SCI CHINA SER G 49, 421–429 (2006). https://doi.org/10.1007/s11433-006-0421-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-006-0421-8

Keywords

Navigation