Skip to main content
Log in

A universal simulating framework for quantum key distribution systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Quantum key distribution (QKD) provides a physical-based way to conciliate keys between remote users securely. Simulation is an essential method for designing and optimizing QKD systems. We develop a universal simulation framework based on quantum operator descriptions of photon signals and optical devices. The optical devices can be freely combined and driven by the photon excitation events, which make it appropriate for arbitrary QKD systems in principle. Our framework focuses on realistic characters of optical devices and system structures. The imperfections of the devices and the non-local properties of a quantum system are taken into account when modeling. We simulate the single-photon and Hong-Ou-Mandel (HOM) interference optical units, which are fundamental of QKD systems. The results using this event-driven framework agree well with the theoretical results, which indicate its feasibility for QKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of Conference on Computers, Systems and Signal Processing, Bangalore, 175

  2. Ekert A K. Quantum cryptography based on Bell’s theorem. Phys Rev Lett, 1991, 67: 661–663

    Article  MathSciNet  MATH  Google Scholar 

  3. Gottesman D, Lo H K, Lutkenhaus N, et al. Security of quantum key distribution with imperfect devices. In: Proceedings of International Symposium on Information Theory, Chicago, 2004. 136

  4. Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution. Rev Mod Phys, 2009, 81: 1301–1350

    Article  Google Scholar 

  5. Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys Rev Lett, 2005, 94: 230503

    Article  Google Scholar 

  6. Lo H K, Ma X, Chen K. Decoy state quantum key distribution. Phys Rev Lett, 2005, 94: 230504

    Article  Google Scholar 

  7. Tomamichel M, Renner R. Uncertainty relation for smooth entropies. Phys Rev Lett, 2011, 106: 110506

    Article  Google Scholar 

  8. Laing A, Scarani V, Rarity J G, et al. Reference-frame-independent quantum key distribution. Phys Rev A, 2010, 82: 012304

    Article  Google Scholar 

  9. Yin Z Q, Wang S, Chen W, et al. Reference-free-independent quantum key distribution immune to detector side channel attacks. Quantum Inf Process, 2014, 13: 1237–1244

    Article  MathSciNet  Google Scholar 

  10. Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett, 2012, 108: 130503

    Article  Google Scholar 

  11. Curty M, Xu F, Cui W, et al. Finite-key analysis for measurement-device-independent quantum key distribution. Nat Commun, 2014, 5: 3732

    Article  Google Scholar 

  12. Sasaki T, Yamamoto Y, Koashi M. Practical quantum key distribution protocol without monitoring signal disturbance. Nature, 2014, 509: 475–478

    Article  Google Scholar 

  13. Lim C C W, Curty M, Walenta N, et al. Concise security bounds for practical decoy-state quantum key distribution. Phys Rev A, 2014, 89: 022307

    Article  Google Scholar 

  14. Rusca D, Boaron A, Grünenfelder F, et al. Finite-key analysis for the 1-decoy state QKD protocol. Appl Phys Lett, 2018, 112: 171104

    Article  Google Scholar 

  15. Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature, 2018, 557: 400–403

    Article  Google Scholar 

  16. Ma X, Zeng P, Zhou H. Phase-matching quantum key distribution. Phys Rev X, 2018, 8: 031043

    Google Scholar 

  17. Wang X B, Yu Z W, Hu X L. Twin-field quantum key distribution with large misalignment error. Phys Rev A, 2018, 98: 062323

    Article  Google Scholar 

  18. Cui C, Yin Z Q, Wang R, et al. Twin-field quantum key distribution without phase postselection. Phys Rev Appl, 2019, 11: 034053

    Article  Google Scholar 

  19. Peng C Z, Zhang J, Yang D, et al. Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys Rev Lett, 2007, 98: 010505

    Article  Google Scholar 

  20. Dixon A R, Yuan Z L, Dynes J F, et al. Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Opt Express, 2008, 16: 18790

    Article  Google Scholar 

  21. Wang S, Yin Z Q, Chen W, et al. Experimental demonstration of a quantum key distribution without signal disturbance monitoring. Nat Photon, 2015, 9: 832–836

    Article  Google Scholar 

  22. Wang C, Song X T, Yin Z Q, et al. Phase-reference-free experiment of measurement-device-independent quantum key distribution. Phys Rev Lett, 2015, 115: 160502

    Article  Google Scholar 

  23. Takesue H, Sasaki T, Tamaki K, et al. Experimental quantum key distribution without monitoring signal disturbance. Nat Photon, 2015, 9: 827–831

    Article  Google Scholar 

  24. Yin H L, Chen T Y, Yu Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys Rev Lett, 2016, 117: 190501

    Article  Google Scholar 

  25. Comandar L C, Lucamarini M, Fröohlich B, et al. Quantum key distribution without detector vulnerabilities using optically seeded lasers. Nat Photon, 2016, 10: 312–315

    Article  Google Scholar 

  26. Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549: 43–47

    Article  Google Scholar 

  27. Fröohlich B, Lucamarini M, Dynes J F, et al. Long-distance quantum key distribution secure against coherent attacks. Optica, 2017, 4: 163–167

    Article  Google Scholar 

  28. Boaron A, Boso G, Rusca D, et al. Secure quantum key distribution over 421 km of optical fiber. Phys Rev Lett, 2018, 121: 190502

    Article  Google Scholar 

  29. Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance. Opt Lett, 2018, 43: 2030

    Article  Google Scholar 

  30. Wang S, He D Y, Yin Z Q, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys Rev X, 2019, 9: 021046

    Google Scholar 

  31. Minder M, Pittaluga M, Roberts G L, et al. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat Photon, 2019, 13: 334–338

    Article  Google Scholar 

  32. Zhong X, Hu J, Curty M, et al. Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys Rev Lett, 2019, 123: 100506

    Article  Google Scholar 

  33. Liu Y, Yu Z W, Zhang W, et al. Experimental twin-field quantum key distribution through sending or not sending. Phys Rev Lett, 2019, 123: 100505

    Article  Google Scholar 

  34. Chen J P, Zhang C, Liu Y, et al. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. 2020, 124: 070501

  35. Lo H K, Curty M, Tamaki K. Secure quantum key distribution. Nat Photon, 2014, 8: 595–604

    Article  Google Scholar 

  36. Yoshino K, Fujiwara M, Nakata K, et al. Quantum key distribution with an efficient countermeasure against correlated intensity fluctuations in optical pulses. npj Quantum Inf, 2018, 4: 8

    Article  Google Scholar 

  37. Angrisani L, D’Arco M. Modeling timing jitter effects in digital-to-analog converters. IEEE Trans Instrum Meas, 2008, 58: 330–336

    Article  Google Scholar 

  38. Wang F X, Chen W, Li Y P, et al. Non-Markovian property of afterpulsing effect in single-photon avalanche detector. J Lightw Technol, 2016, 34: 3610–3615

    Article  Google Scholar 

  39. Zhang J, Itzler M A, Zbinden H, et al. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci Appl, 2015, 4: e286

    Article  Google Scholar 

  40. Fan-Yuan G J, Wang C, Wang S, et al. Afterpulse analysis for quantum key distribution. Phys Rev Appl, 2018, 10: 064032

    Article  Google Scholar 

  41. Buhari A, Zukarnain Z A, Subramaniam S K, et al. An efficient modeling and simulation of quantum key distribution protocols using OptiSystem™. In: Proceedings of IEEE Symposium on Industrial Electronics and Applications, 2012. 84–89

  42. Mailloux L O, Morris J D, Grimaila M R, et al. A modeling framework for studying quantum key distribution system implementation nonidealities. IEEE Access, 2015, 3: 110–130

    Article  Google Scholar 

  43. Archana B, Krithika S. Implementation of bb84 quantum key distribution using optsim. In: Proceedings of the 2nd International Conference on Electronics and Communication Systems (ICECS), 2015. 457–460

  44. Ma X, Qi B, Zhao Y, et al. Practical decoy state for quantum key distribution. Phys Rev A, 2005, 72: 012326

    Article  Google Scholar 

  45. Krenn M, Malik M, Fickler R, et al. Automated search for new quantum experiments. Phys Rev Lett, 2016, 116: 090405

    Article  Google Scholar 

  46. Varga A. Using the OMNeT++ discrete event simulation system in education. IEEE Trans Educ, 1999, 42: 11

    Article  Google Scholar 

  47. Varga A. Discrete event simulation system. In: Proceedings of the European Simulation Multiconference (ESM’001), 2001. 1–7

  48. Varga A, Hornig R. An overview of the OMNeT++ simulation environment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, 2008. 1–10

  49. Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett, 1987, 59: 2044

    Article  Google Scholar 

  50. Glauber R J. Coherent and incoherent states of the radiation field. Phys Rev, 1963, 131: 2766–2788

    Article  MathSciNet  MATH  Google Scholar 

  51. Jones R C. A new calculus for the treatment of optical systems. I. description and discussion of the calculus. J Opt Soc Am, 1941, 31: 488–493

    Article  MATH  Google Scholar 

  52. Metropolis N, Ulam S. The Monte Carlo method. J Am Stat Assoc, 1949, 44: 335–341

    Article  MATH  Google Scholar 

  53. Zehnder L Z. Ein neuer interferenzrefraktor. Instrumentenkunde, 1891, 11: 275–285

    Google Scholar 

  54. Mach L. Ueber einen interferenzrefraktor. Zeitschrift für Instrumentenkunde, 1892, 12: 89

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFA0306400), National Natural Science Foundation of China (Grant Nos. 61627820, 61675189, 61622506, 61822115), Anhui Initiative in Quantum Information Technologies (Grant No. AHY030000). We also appreciate Dr. Xuebi AN and Yuyang DING of Anhui Qasky, Co. Ltd. for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Chen or Zheng-Fu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan-Yuan, GJ., Chen, W., Lu, FY. et al. A universal simulating framework for quantum key distribution systems. Sci. China Inf. Sci. 63, 180504 (2020). https://doi.org/10.1007/s11432-020-2886-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-2886-x

Keywords

Navigation