Skip to main content
Log in

Context-aware local abnormality detection in crowded scene

基于上下文感知的拥挤场景局部异常检测

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel algorithm by jointly modeling motion and context information targeting at detecting abnormal events in crowded scenes. In our algorithm, context pattern information, extracted through volume local binary patterns computation on three orthogonal planes (LBP-TOP) between local target areas with surrounding areas, is explicitly taken into consideration for localizing abnormality. To capture motion information, a novel feature descriptor named Multi-scale Histogram of Frequency Coefficient is explored by taking Fourier Transform on the extracted dense trajectories. For detection of abnormality, sparse reconstruction cost from a learned event dictionary is adopted to classify local normal and abnormal events. Experiments conducted on three benchmark datasets show superior performance to many related state-of-the-art methods.

摘要

创新点

本论文通过对运动特征和上下文感知联合建模, 提出了一种新颖的算法用于拥挤场景下的异常事件检测。 在本算法中, 通过目标区域和周围区域的三个交叉垂直平面计算时空局部二值模式信义, 以提取上下文信息, 用于精确定位异常事件位置。 另外, 通过稠密轨迹的傅里叶变换系数, 提取则多尺度频率系数直方图用于运动特征。 最后基于已训练字典的重构误差来判别异常事件。 本算法, 在三个基准数据上取得很好效果, 证明了算法的有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oluwatoyin P, Wang K. Video-based abnormal human behavior recognition —a review. IEEE Trans Syst Man Cybern, 2012, 42: 865–878

    Article  Google Scholar 

  2. Kratz L, Nishin K. Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Miami, 2009. 1446–1453

    Google Scholar 

  3. Wu S D, Moore B, Shah M. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 2054–2060

    Google Scholar 

  4. Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Miami, 2009. 935–942

    Google Scholar 

  5. Cui X Y, Liu Q S, Gao M, et al. Abnormal detection using interaction energy potentials. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Providence, 2011. 3161–3167

    Google Scholar 

  6. Boiman O, Irani M. Detecting irregularities in images and in video. Int J Comput Vis, 2007, 74: 17–31

    Article  Google Scholar 

  7. Adam A, Rivlin E, Shimshoni I, et al. Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans Pattern Anal Mach Intell, 2008, 30: 555–560

    Article  Google Scholar 

  8. Loy C C, Xiang T, Gong S G. Detecting and discriminating behavioural anomalies. Pattern Recognit, 2013, 44: 117–132

    Article  Google Scholar 

  9. Antic B, Ommer B. Video parsing for abnormality detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Barcelona, 2011. 2415–2422

    Google Scholar 

  10. Thida M, Eng H L, Remagnin P. Laplacian eigenmap with temporal constraints for local abnormality detection in crowded scenes. IEEE Trans Cybern, 2013, 43: 2147–2156

    Article  Google Scholar 

  11. Cong Y, Yuan J S, Liu J. Sparse reconstruction cost for abnormal event detection. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Providence, 2011. 3449–3456

    Google Scholar 

  12. Cong Y, Yuan J S, Liu J. Abnormal event detection in crowded scenes using sparse representation. Pattern Recognit, 2013, 43: 1851–1864

    Article  Google Scholar 

  13. Zhao B, Li F F, Xing E P. Online detection of unusual events in videos via dynamic sparse coding. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Providence, 2011. 3313–3320

    Google Scholar 

  14. Zhang C, Liu J, Tian Q, et al. Image classification by non-negative sparse coding, low-rank and sparse decomposition. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Providence, 2011. 1673–1680

    Google Scholar 

  15. Zhu Y Y, Nayak N M, Roy-Chowdhury A K. Context-aware activity recognition and anomaly detection in video. J Sel Topics Signal Processing, 2013, 7: 91–101

    Article  Google Scholar 

  16. Yi S, Pavlovic V. Spatio-temporal context modeling for BoW-based video classification. In: Proceedings of Workshops of International Conference on Computer Vision, Sydney, 2013. 779–786

    Google Scholar 

  17. Yi J, Peng Y X, Xiao J G. A temporal context model for boosting video annotation. Sci China Inf Sci, 2013, 56: 110904

    Article  Google Scholar 

  18. Cong Y, Yuan J S, Tang Y D. Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Trans Inf Forensic Secur, 2013, 8: 1590–1599

    Article  Google Scholar 

  19. Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell, 2002, 24: 971–987

    Article  Google Scholar 

  20. Zhao G, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 915–928

    Article  Google Scholar 

  21. Liao S, Zhu X, Lei Z, et al. Learning multi-scale block local binary patterns for face recognition. In: Proceedings of International Conference on Advances in Biometrics, Korea, 2007. 828–837

    Google Scholar 

  22. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv, 2009, 41: 1–58

    Article  Google Scholar 

  23. Helbing D, Molnar P. Social force model for pedestrian dynamics. Phys Rev E, 1995, 51: 42–82

    Google Scholar 

  24. Blei D M, Ng A Y, Jordan M. Latent dirichlet allocation. J Mach Learn Res, 1981, 34: 993–1022

    Google Scholar 

  25. Raghavendra R, Alessio D B, Macro C, et al. Optimizing interaction force for global anomaly detection in crowded scenes. In: Proceedings of Workshops of International Conference on Computer Vision, Barcelona, 2011. 136–143

    Google Scholar 

  26. Thida M, Eng H, Monekosso D, et al. Learning video manifold for segmenting crowd events and abnormality detection. In: Proceedings of Asian Conference on Computer Vision, New Zealand, 2010. 439–449

    Google Scholar 

  27. Lu C, Shi J P, Jia J J. Abnormal event detection at 150 fps in MATLAB. In: Proceedings of International Conference on Computer Vision, Washington DC, 2013. 2720–2727

    Google Scholar 

  28. Han Y, Yang Y, Ma Z, et al. Semi-supervised feature selection via spline regression for video semantic recognition. IEEE Trans Neural Netw Learn Syst, 2014, 26: 252–264

    Article  Google Scholar 

  29. Han Y, Chen J, Cao X, et al. Feature selection with spatial path coding for multimedia analysis. Inf Sci, 2014, 281: 1589–1594

    MathSciNet  Google Scholar 

  30. Mahadevan V, Li W, Bhalodia V, et al. Anomaly detection in crowded scenes. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 1975–1981

    Google Scholar 

  31. Li W X, Mahadevan V, Vasconcelos N. Anomaly detection and localization in crowded scenes. IEEE Trans Pattern Anal Mach Intell, 2014, 36: 18–32

    Article  Google Scholar 

  32. Kim J, Grauman K. Observe locally, infer globally: a space-time mrf for detecting abnormal activities with incremental updates. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Miami, 2009. 2921–2928

    Google Scholar 

  33. Tipping M, Bishop C. Mixtures of probabilistic principal component analyzers. Neural Comput, 1999, 11: 443–482

    Article  Google Scholar 

  34. Thida M, Eng H L, Remagnino P. Laplacian eigenmap with temporal constraints for local abnormality detection in crowded scenes. IEEE Trans Cybern, 2013, 43: 2147–2156

    Article  Google Scholar 

  35. Saligrama V, Chen Z. Video anomaly detection based on local statistical aggregates. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 2112–2119

    Google Scholar 

  36. Li C S, Liu Q S, Dong W S, et al. Human age estimation based on locality and ordinal information. IEEE Trans Cybern, 2014, in press

    Google Scholar 

  37. Roshtkhari M, Levine M. Online dominant and anomalous behavior detection in videos. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Washington DC, 2013. 2611–2618

    Google Scholar 

  38. Xu J, Denman S, Sridharan S, et al. Dynamic texture reconstruction from sparse codes for unusual event detection in crowded scenes. In: Proceedings of the 2011 Joint ACM Workshop on Modeling and Representing Events, New York, 2011. 25–30

    Chapter  Google Scholar 

  39. Wang H, Alexander K, Cordelia S, et al. Action recognition by dense trajectories. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Providence, 2011. 3169–3176

    Google Scholar 

  40. Mordohai P, Medioni G. Dimensionality estimationi, manifold learning and function approximation using tensor voting. J Mach Learn Res, 2010, 11: 411–450

    MATH  MathSciNet  Google Scholar 

  41. Sand P, Teller S. Particle video: long-range motion estimation using point trajectories. Int J Comput Vis, 2008, 80: 72–91

    Article  Google Scholar 

  42. Mehran R, Moore B, Shah M. A streakline representation of flow in crowded scenes. In: Proceedings of European Conference on Computer Vision, Greece, 2010. 439–452

    Google Scholar 

  43. Dalal N, Triggs B, Schmid C. Human detection using oriented histograms of flow and appearance. In: Proceedings of European Conference on Computer Vision, Austria, 2006. 428–441

    Google Scholar 

  44. Khan S M, Shah M. A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: Proceedings of European Conference on Computer Vision, Austria, 2006. 133–146

    Google Scholar 

  45. Zhao X M, Gong D, Medioni G. Tracking using motion patterns for very crowded scenes. In: Proceedings of European Conference on Computer Vision, Italy, 2012. 315–328

    Google Scholar 

  46. Xu J, Denman S, Sridharan S, et al. Activity analysis in complicated scenes using DFT coefficients of particle trajectories. In: Proceedings of IEEE International Conference on Advanced Video and Signal-Based Surveillance, Beijing, 2012. 82–87

    Google Scholar 

  47. Naftel A, Khalid S. Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space. Multimedia Syst, 2006, 12: 227–238

    Article  Google Scholar 

  48. Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms. In: Proceedings of Conference on Neural Information Processing Systems, Canada, 2006. 801–808

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Jin or XiaoYu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Jin, X., Zhang, X. et al. Context-aware local abnormality detection in crowded scene. Sci. China Inf. Sci. 58, 1–11 (2015). https://doi.org/10.1007/s11432-015-5294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5294-x

Keywords

关键词

Navigation