Skip to main content
Log in

Communication network designing: Transmission capacity, cost and scalability

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Despite the growing number of works centering around the traffic dynamics on complex networks, these researches still have some common shortcomings, e.g., too simple traffic flow model and lack of considerations for the designing cost and scalability issues. This paper builds on a more realistic traffic flow model, and offers a holistic view on the network designing problem. In addition to the extensively studied transmission capacity, this paper takes designing cost and scalability as two other designing objectives, and presents a quantitative study of how different designing choices independently and collectively influence these objectives by the introduction of a cartesian coordinate system. It is shown that different kinds of network topologies display different shapes of achievable solution spaces and exhibit different abilities to achieve cost-effective and scalable designing. In particular, we find the philosophy underlying empirical network designing and engineering today fails to meet the cost-effective and scalable designing requirements, and propose a cost-effective and scalable designing scheme for BA-like networks, i.e., the efficient routing combined with effective betweenness based link bandwidth allocation. In addition, when designing a thoroughly new network from the beginning, we find that ER network is a good candidate to achieve cost-effective and scalable designing in most settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huston G. Analyzing the Internet’s BGP routing table. Internet Protocol J, 2001, 4

  2. Broido A, Nemeth E, Claffy K. Internet expansion, refinement and churn. Eur Trans Telecommun, 2002, 13: 33–51

    Article  Google Scholar 

  3. Network Science and Engineering (NetSE) Research Agenda. http://www.cra.org/ccc/docs/NetSE-Research-Agenda.pdf, 2009

  4. Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512

    Article  MathSciNet  Google Scholar 

  5. Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. In: Proceedings of ACM SIGCOMM 1999, Cambridge, Massachusetts, USA, 1999

  6. Newman M E J. Assortative mixing in networks. Phys Rev Lett, 2002, 89: 208701

    Article  Google Scholar 

  7. Dorogovtsev S N. Clustering of correlated networks. Phys Rev E, 2004, 69: 027014

    Article  Google Scholar 

  8. Zhang G Q, Quoitin B, Zhou S. Phase changes in the evolution of the IPv4 and IPv6 AS-level Internet topologies. Comput Commun, 2011, 34: 649–657

    Article  Google Scholar 

  9. Albert R, Barabási A L. Statistical mechanics of complex networks. Rev Mod Phys, 2002, 74: 47–97

    Article  MATH  Google Scholar 

  10. Dorogovtsev S N, Mendes J F F. Evolution of networks. Adv Phys, 2002, 51: 1097–1187

    Article  Google Scholar 

  11. Newman M E J. The structure and function of complex networks. SIAM Rev, 2003, 45: 167–256

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang G Q, Zhang G Q, Cheng S Q, et al. Symbiotic effect: a guideline for network modeling. Europhys Lett, 2009, 87: 68002

    Article  Google Scholar 

  13. Shen H W, Cheng X Q, Cai K, et al. Detect overlapping and hierarchical community structure in networks. Physica A, 2009, 388: 1706–1712

    Article  Google Scholar 

  14. Shen H W, Cheng X Q, Fang B X. Covariance, correlation matrix and the multiscale community structure of networks. Phys Rev E, 2010, 82: 016114

    Article  Google Scholar 

  15. Cheng X Q, Ren F X, Zhou S, et al. Triangular clustering in document networks. New J Phys, 2009, 11: 033019

    Article  Google Scholar 

  16. Newman M E J. Finding and evaluating community structure in networks. Phys Rev E, 2004, 69: 026113

    Article  Google Scholar 

  17. Kim K, Kahng B, Kim D. Jamming transition in traffic flow under the priority queueing protocol. Europhys Lett, 2009, 86: 58002

    Article  Google Scholar 

  18. Sreenivasan S, Cohen R, López E, et al. Structural bottlenecks for communication in networks. Phys Rev E, 2007, 75: 036105

    Article  Google Scholar 

  19. Martino D D, Asta L D, Bianconi G, et al. A minimal model for congestion phenomena on complex networks. J Stat Mech, 2009, P08023

  20. Martino D D, Asta L D, Bianconi G, et al. Congestion phenomena on complex networks. Phys Rev E, 2009, 79: 015101

    Article  Google Scholar 

  21. Echenique P, Gómez-Gardeñes J, Moreno Y. Improved routing strategies for Internet traffic delivery. Phys Rev E, 2004, 70, 056105

    Google Scholar 

  22. Echenique P, Gómez-Gardeñes J, Moreno Y. Dynamics of jamming transitions in complex networks. Europhys Lett, 2005, 71: 325–331

    Article  Google Scholar 

  23. Gupte N, Singh B K. Role of connectivity in congestion and decongestion in a communication network. Euro Phys J B, 2006, 50: 227–230

    Google Scholar 

  24. Gupte N, Singh B K, Janaki T M. Networks: structure, function and optimisation. Physica A, 2005, 346: 75–81

    Article  Google Scholar 

  25. Zhang G Q, Wang D, Li G J. Enhancing the transmission efficiency by edge deletion in scale-free networks. Phys Rev E, 2007, 76: 017101

    Article  Google Scholar 

  26. Yan G, Zhou T, Hu B, et al. Efficient routing on complex networks. Phys Rev E, 2006, 73: 046108

    Article  Google Scholar 

  27. Zhao L, Lai Y C, Park K, et al. Onset of traffic congestion in complex networks. Phys Rev E, 2005, 71: 026125

    Article  Google Scholar 

  28. Danila B, Yu Y, Marsh J A, et al. Optimal transport on complex networks. Phys Rev E, 2006, 74: 046106

    Article  Google Scholar 

  29. Zhang G Q. On cost-effective communication network designing. Eruophys Lett, 2010, 89: 38003

    Article  Google Scholar 

  30. Arrowsmith D K, Mondragón R J, Woolf M. Data traffic, topology and congestion. In: Complex Dynamics in Communication Networks. Berlin/Heidelberg: Springer Press, 2005

    Google Scholar 

  31. Arenas A, Guilera A D, Guimerμa R. Communication in networks with hierarchical branching. Phys Rev Lett, 2001, 86: 3196–3199

    Article  Google Scholar 

  32. Borgatti S P. Centrality and network flow. Soc Netw, 2005, 27: 55–71

    Article  Google Scholar 

  33. Goh K I, Kahng B, Kim D. Universal behavior of load distribution in scale-free networks. Phys Rev Lett, 2001, 87: 278701

    Article  Google Scholar 

  34. Guimerá R, Guilera A D, Redondo F V, et al. Optimal network topologies for local search with congestion. Phys Rev Lett, 2002, 89: 328170

    Article  Google Scholar 

  35. Freeman L C. Centrality in social networks: conceptual clarification. Soc Netw, 1979, 1: 215–239

    Article  Google Scholar 

  36. Labovitz C, Malan G R, Jahanian F. Internet routing instability. IEEE/ACM Trans Netw, 1998, 6: 515–528

    Article  Google Scholar 

  37. Paxson V. End-to-end routing behavior in the Internet. ACM SIGCOMM Comput Commun Rev, 2006, 36: 41–56

    Article  Google Scholar 

  38. Li L, Alderson D, Willinger W, et al. A first-principles approach to understanding the Internet’s router-level topology. In: Proceedings of ACM SIGCOMM 2004, Portland, Oregon, USA, 2004

  39. Erdös P, Rényi A. On random graphs. Publ Math Debrecen, 1959, 6: 290–297

    MathSciNet  MATH  Google Scholar 

  40. Watts D J, Strogatz S H. Collective dynamics of small-world networks. Nature, 1998, 393: 440–442

    Article  Google Scholar 

  41. Spring N, Mahajan R, Wetherall D. Measuring ISP topologies with Rocketfuel. In: Proceedings of ACM SIGCOMM 2002, Pittsburgh, Pennsylvania, USA, 2002

  42. Chiaraviglio L, Mellia M, Neri F. Reducing power consumption in backbone networks. In: Proceedings of IEEE ICC 2009, Dresden, Germany, 2009

  43. Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complex networks. Science, 2002, 298: 824–827

    Article  Google Scholar 

  44. Zhang G Q. Traversability of graph space with given degree sequence under edge rewiring. Electron Lett, 2010, 46: 351–352

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoQiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Zhang, G. Communication network designing: Transmission capacity, cost and scalability. Sci. China Inf. Sci. 55, 2454–2465 (2012). https://doi.org/10.1007/s11432-011-4407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4407-4

Keywords

Navigation