Skip to main content
Log in

An optimal adaptive filtering algorithm with a polynomial prediction model

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A new approach to the optimal adaptive filtering is proposed in this paper. In this approach, a polynomial prediction model is used to describe the time-variant/invariant impulse response coefficients of an identified system. When the polynomial prediction model is viewed as the state equations of the identified impulse response coefficients and the relationships between the inputs and outputs of the system are regarded as the measurements of the states, our adaptive filtering can be achieved in the framework of the Kalman filter. It is understood that Kalman filter is optimal in the sense of the MAP (maximum a posteriori), ML (most likelihood) and MMSE (minimum mean square error) under the linear and Gaussian white noise conditions. As a result, our algorithm is also optimal in the statistical senses as Kalman filter does, provided that the impulse response coefficients can be modeled by a polynomial. Not only do the analytical results of the algorithm but also the simulation results show that our algorithm outperforms the traditional known algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Widrow B, Stearns S D. Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1985

    MATH  Google Scholar 

  2. Haykin S. Adaptive Filter Theory. 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2002

    Google Scholar 

  3. Benesty J, Huang Y. Adaptive Signal Processing—Applications to Real-World Problems. Berlin: Springer-Verlag, 2003

    MATH  Google Scholar 

  4. Huang Y, Benesty J, Chen J. Acoustic MIMO Signal Processing. Boston, MA: Springer, 2006

    MATH  Google Scholar 

  5. Sayed A H. Fundamentals of Adaptive Filtering. New York: Wiley, 2003

    Google Scholar 

  6. Glentis G O, Berberidis K, Theodoridis S. Efficient least squares adaptive algorithms for FIR transversal filtering. IEEE Signal Process Mag, 1999, 16: 13–41.

    Article  Google Scholar 

  7. Guo L, Ljung L, Wang G J. Necessary and suffcient conditions for stability of LMS. IEEE Trans Automat Control, 1997, 42: 761–770

    Article  MATH  MathSciNet  Google Scholar 

  8. Hassibi B, Sayed A H, Kailath T. H 8 optimality of the LMS algorithm. IEEE Trans Signal Process, 1996, 44: 267–280

    Article  Google Scholar 

  9. Evans J B, Xue P, Liu B. Analysis and implementation of variable step size adaptive algorithms. IEEE Trans Signal Process, 1993, 41: 2517–2535

    Article  MATH  Google Scholar 

  10. Aboulnasr T, Mayyas K. A robust variable step-size LMS-type algorithm: analysis and simulations. IEEE Trans Signal Process, 1997, 45: 631–639

    Article  Google Scholar 

  11. Pazaitis D I, Constantinides A G. A novel kurtosis driven variable step-size adaptive algorithm. IEEE Trans Signal Process, 1999, 47: 864–872

    Article  MATH  Google Scholar 

  12. Mader A, Puder H, Schmidt G U. Step-size control for acoustic echo cancellation filters-an overview. Signal Process, 2000, 80: 1697–1719

    Article  MATH  Google Scholar 

  13. Morgan D R, Kratzer S G. On a class of computationally efficient, rapidly converging, generalized NLMS algorithm. IEEE Signal Process Lett, 1996, 3: 245–247.

    Article  Google Scholar 

  14. Gollamudi S, Nagaraj S, Kapoor S, et al. Set-member-ship filtering and a set-membership normalized LMS algorithm with an adaptive step size. IEEE Signal Process Lett, 1998, 5: 111–114

    Article  Google Scholar 

  15. Shin H C, Sayed A H, Song W J. Variable step-size NLMS and affine projection algorithms. IEEE Signal Process Lett, 2004, 11: 132–135

    Article  Google Scholar 

  16. Benesty J, Rey H, Vega L R, et al. A nonparametric VSS NLMS algorithm. IEEE Signal Process Lett, 2006, 13: 581–584

    Article  Google Scholar 

  17. Gendron P J. An empirical Bayes estimator for in-scale adaptive filtering. IEEE Trans Signal Process, 2005, 53: 1670–1683

    Article  MathSciNet  Google Scholar 

  18. Huang D Y, Rahardja S, Huang H B. Maximum a posteriori based adaptive algorithms. In: Asilomar Conference on Signals, Systems and Computers, Asilomar, 2007. 1628–1632

  19. Steven M K. Fundamentals of Statistical Signal Processing, Volume: Estimation Theory; Fundamentals of Statistical Signal Processing, Volume: Detection Theory (in Chinese). Beijing: Publishing House of Electronics Industry, 2003

    Google Scholar 

  20. van der Merwe R. Sigma-point Kalman filters for probabilistic inference in dyanmic state-space models. Dissertation for the Doctoral Degree. Cape Town, South Africa: Oregon Health & Science University, 2004

    Google Scholar 

  21. Welch G, Bishop G. An Introduction to the Kalman Filter. http://www.cs.unc.edu/~welch/kalman/kalmanIntro.htm/. 2004.

  22. Weisstein E W. Weierstrass Approximation Theorem. From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/WeierstrassApproximationTheorem.html

  23. Xu L J, Zhang J Q, Yan Y. A wavelet-based multisensor data fusion algorithm. IEEE Trans Instrum Measur, 2004, 53: 1539–1545

    Article  Google Scholar 

  24. Ifeachor E C, Jervis B W. Digital Signal Processing A Practical Approach. 2nd ed. Beijing: Publishing House of Electronics Industry, 2003

    Google Scholar 

  25. Heinonen P, Neuvo Y. FIR-median hybrid filters with predictive FIR substructures. IEEE Trans Acoust Speech Signal Process, 1988, 36: 892–899

    Article  MATH  Google Scholar 

  26. Fitzgerald R J. Divergence of the Kalman filter. IEEE Trans Autom Control, 1971, 16: 736–747

    Article  Google Scholar 

  27. Zhang J K. Linear Model Parameter Estimation and Its Improvement. Changsha: Publishing House of National University of Defense Technology, 1999

    Google Scholar 

  28. Chui C K, Cheng G. Kalman Filtering with Real-Time Application. Berlin: Springer-Verlag, 1987

    Google Scholar 

  29. William F, Arnold III, Laub A J. Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc IEEE, 1984, 72: 1746–1754

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JianQiu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, J., Zhang, J. An optimal adaptive filtering algorithm with a polynomial prediction model. Sci. China Inf. Sci. 54, 153–162 (2011). https://doi.org/10.1007/s11432-010-4141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4141-3

Keywords

Navigation