Skip to main content
Log in

New approaching condition for sliding mode control design with Lipschitz switching surface

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we concern the approaching condition of sliding mode control (SMC) with a Lipschitz switching surface that may be nonsmooth. New criteria on the relation between phase trajectories and an arbitrary Lipschitz continuous surface are examined firstly. Filippov’s differential inclusion is adopted to describe the dynamics of trajectories of the closed-loop system with SMC. Compared with Filippov’s criteria for only smooth surface, new criteria are proposed by utilizing the cone conditions that allow the surface to be nonsmooth. This result also yields a new approaching condition of SMC design. Based on the new approaching condition, we develop the sliding mode controller for a class of nonlinear single-input single-output (SISO) systems, of which the switching surface is designed Lipschitz continuous for the nonsmooth sliding motion. Finally, we provide a numerical example to verify the new design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeCarlo R, Zak S, Matthews G. Variable structure control of nonlinear multivariable systems: A tutorial. Pro IEEE, 1988, 76(3): 212–232

    Article  Google Scholar 

  2. Hung J Y, Gao W, Hung J C. Variable structure control: A survey. IEEE Trans Indust Electr, 1993, 40(1): 2–22

    Article  Google Scholar 

  3. Pan S W, Su H Y, Hu X H, et al. Variable structure control theory and application: A survey (in Chinese). In: Proceedings of the 3rd World Congress on Intelligent Control and Automation, Heifei, China, 2000. 2977–2981

  4. Ming H Y, Min C H, Kuen L C, et al. High-order sliding mode control of nonlinear affine control systems (in Chinese). Acta Automat Sin, 2002, 28(2): 284–289

    Google Scholar 

  5. Li H, Xie J Y. Robust SMS of uncertain time-varying systems dissatisfying matching condition (in Chinese). Acta Automat Sin, 2001, 27(2): 252–257

    Google Scholar 

  6. Hirschorn R M. Generalized sliding-mode control for multi-input nonlinear systems. IEEE Trans Automat Contr, 2006, 51(9): 1410–1422

    Article  MathSciNet  Google Scholar 

  7. Yan L, Qin M J, Fu C Y. A robust VS-MRAC with a low variable structure control gain. Acta Automat Sin, 2001, 27(5): 665–671

    Google Scholar 

  8. Shyu K K, Shieh H J. A new switching surface sliding-mode speed control for induction motor drive systems. IEEE Trans Power Electron, 1996, 11(4): 660–667

    Article  Google Scholar 

  9. Shim T, Chang S, Lee S. Investigation of sliding-surface design on the performance of sliding mode controller in antilock braking systems. IEEE Trans Vehic Tech, 2008, 57(2): 747–759

    Article  Google Scholar 

  10. Wang W J, Lin H R. Fuzzy control design for the trajectory tracking on uncertain nonlinear systems. IEEE Trans Fuzzy Syst, 1999, 7(1): 53–62

    Article  Google Scholar 

  11. Feng Y, An C Q, Li T. Steady state error reduction using two sliding surfaces in a class of nonlinear systems (in Chinese). Contr Decis, 2000, 15(3): 361–364

    Google Scholar 

  12. Yu X H, Wu Y Q Adaptive terminal sliding mode control of uncertain nonlinear systems backstepping approach (in Chinese). Contr Theory Appli, 1998, 15(6): 900–907

    MathSciNet  Google Scholar 

  13. Filippov A F. Differential equations with discontinuous right-hand side. Am Math Society Trans, 1964, 42(2): 354–362

    Google Scholar 

  14. Filippov A F. Differential Equations with Discontinuous Right-hand Sides. Netherlands: Kluwer Academic Publishers, 1988

    MATH  Google Scholar 

  15. Clarke F H. Optimization and Nonsmooth Analysis. New York: SIAM, 1990

    MATH  Google Scholar 

  16. Bouligand G. Introduction a la geometrie infinitesimale directe. Gauthiers-Villars, Paris, Bourgin 1932

    Google Scholar 

  17. Nagumo M. Uber die lage der integralkurven gewöhnlicher differentialgleichungen. In: Proceedings of the Physico Mathematical Society of Japan, 1942, 24: 551–559

    MATH  MathSciNet  Google Scholar 

  18. Aubin J P, Cellina A. Differential Inclusion. Berlin: Springer-Verlag, 1984

    Google Scholar 

  19. Clarke F H. Generalized gradients and applications. Trans Am Math Society, 1975, 205(2): 247–262

    Article  MATH  Google Scholar 

  20. Clarke F H, Ledyaev Y, Stern R J, et al. Nonsmooth Analysis and Control Theory. New York: Springer-Verlag, 1998

    MATH  Google Scholar 

  21. Clarke F H, Ledyaev Y S, Stern R J, et al. Qualitative properties of trajectories of control systems: A survey. J Dynamic Contr Syst, 1995, 1(1): 1–48

    Article  MATH  MathSciNet  Google Scholar 

  22. Paden B E, Sastry S S. A calculus for computing filippov’s differential inclusion with application to the variable structure control of robot manipulators. IEEE Trans Circ Syst, 1987, 34(1): 73–82

    Article  MATH  MathSciNet  Google Scholar 

  23. Shevitz D, Paden B. Lyapunov stability theory of nonsmooth systems. IEEE Trans Automat Contr, 1994, 39(9): 1910–1914

    Article  MATH  MathSciNet  Google Scholar 

  24. Ceragioli F M. Discontinuous ordinary differential equations and stabilization. Ph.D. dissertation, Universit degli Studi di Firenze, 1999

  25. Bacciotti A, Ceragioli F, Mazzi L. Differential inclusions and monotonicity conditions for nonsmooth Lyapunov functions. Set-Valued Anal, 2000, 8(3): 299–309

    Article  MATH  MathSciNet  Google Scholar 

  26. Burenkov V I. Sobolev Spaces on Domains. Vieweg. Teubner Verlag, 1998

  27. Simo L, Hungerbühler N. Theorems on Regularity and Singularity of Energy Minimizing Maps. Birkhäser, 1996

  28. Atkinson K E, Han W. Theoretical Numerical Analysis: A Functional Analysis Framework. Berlin: Springer, 2005

    MATH  Google Scholar 

  29. Delfour M C J, Zoléio P. Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM, 2001

  30. Neittaanmäi P, Rudnicki M, Savini A. Inverse Problems and Optimal Design in Electricity and Magnetism. Oxford: University Press, 1996

    Google Scholar 

  31. Blanchini F. Set invariance in control. Automatica, 1999, 35(11): 1747–1767

    Article  MATH  MathSciNet  Google Scholar 

  32. Gruenberg K W, Weir A J. Linear Geometry. Berlin: Springer, 1977

    MATH  Google Scholar 

  33. Vinberg E B. Geometry II-Spaces of Constant Curvature. Berlin: Springer-Verlag, 1993

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, K., Shen, T. & Yao, Y. New approaching condition for sliding mode control design with Lipschitz switching surface. Sci. China Ser. F-Inf. Sci. 52, 2032–2044 (2009). https://doi.org/10.1007/s11432-009-0186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0186-6

Keywords

Navigation