Skip to main content
Log in

Solution to the Generalized Champagne Problem on simultaneous stabilization of linear systems

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

The well-known Generalized Champagne Problem on simultaneous stabilization of linear systems is solved by using complex analysis and Blondel’s technique. We give a complete answer to the open problem proposed by Patel et al., which automatically includes the solution to the original Champagne Problem. Based on the recent development in automated inequality-type theorem proving, a new stabilizing controller design method is established. Our numerical examples significantly improve the relevant results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blondel V. Simultaneous Stabilization of Linear Systems. In: Lect Notes Contr Inf, Vol. 191. London: Springer-Verlag, 1994

    MATH  Google Scholar 

  2. Doyle J, Francis B, Tannenbaum A. Feedback Control Theory. New York: Macmillan Publishing Co., 1991

    Google Scholar 

  3. Vidyasagar M. Control System Synthesis: A Factorization Approach. Massachusetts: The MIT Press, 1985.

    MATH  Google Scholar 

  4. Saeks R, Murray J. Fractional representation, algebraic geometry and the simultaneous stabilization problem. IEEE T Automat Contr, 1982, 27(4): 895–903

    Article  MATH  MathSciNet  Google Scholar 

  5. Desoer C, Liu R, Murray J, et al. Feedback system design: the fractional representation approach to analysis and synthesis. IEEE T Automat Contr, 1980, 25(3): 399–412

    Article  MATH  MathSciNet  Google Scholar 

  6. Youla D, Bongiorno J, Jabr H. Modern Wiener-Hopf design of optimal controllers-part I: The single-input-output case. IEEE T Automat Contr, 1976, 21(1): 3–13

    Article  MATH  MathSciNet  Google Scholar 

  7. Youla D, Jabr H, Bongiorno J. Modern Wiener-Hopf design of optimal controllers-part II: The multivariable case. IEEE T Automat Contr, 1976, 21(3): 319–338

    Article  MATH  MathSciNet  Google Scholar 

  8. Kucera V. Discrete Linear Control: The Polynomial Equation Approach. New York: Wiley, 1979

    MATH  Google Scholar 

  9. Vidyasagar M, Viswanadham N. Algebraic design techniques for reliable stabilization. IEEE T Automat Contr, 1982, 27(5): 1085–1095

    Article  MATH  MathSciNet  Google Scholar 

  10. Youla D, Bongiorno J, Lu C. Single-loop feedback stabilization of linear multivariable plants. Automatica, 1974, 10(2): 159–173

    Article  MATH  MathSciNet  Google Scholar 

  11. Blondel V, Gevers M. Simultaneous stabilization of three linear systems is rationally undecidable. Math Control Signal, 1993, 6(2): 135–145

    Article  MATH  MathSciNet  Google Scholar 

  12. Blondel V, Gevers M, Mortini R, et al. Stabilizable by a stable and by an inverse stable but not by a stable and inverse stable. In: Proceedings of the 31st Conference on Decision and Control, Tucson, Arizons, 1992. 832–833

  13. Blondel V, Gevers M, Mortini R, et al. Simultaneous stabilization of three or more systems: Conditions on the real axis do not suffice. SIAM J Control Optim, 1994, 32(2): 572–590

    Article  MATH  MathSciNet  Google Scholar 

  14. Blondel V, Sontag E D, Vidyasagar M, et al. Open Problems in Mathematical Systems and Control Theory. London: Springer-Verlag, 1999

    Google Scholar 

  15. Patel V V. Solution to the “Champagne Problem” on the simultaneous stabilization of three plants. Syst Contr Lett, 1999, 37(3): 173–175

    Article  MATH  Google Scholar 

  16. Patel V V, Deodhare G, Viswanath T. Some applications of randomized algorithms for control system design. Automatica, 2002, 38(12): 2085–2092

    Article  MATH  MathSciNet  Google Scholar 

  17. Leizarowitz A, Kogan J, Zeheb E. On simultaneous stabilization of linear plants. Lat Am Appl Res, 1999, 29(3–4): 167–174

    Google Scholar 

  18. Ahlfors L. Conformal Invariants: Topics in Geometric Function Theory (McGraw-Hill Series in Higher Mathematics). New York: McGraw-Hill Book Company, 1973

    MATH  Google Scholar 

  19. Conway J. Functional of One Complex Variable. 2nd ed. New York: Springer-Verlag, 1978

    Google Scholar 

  20. Glouzin G. Geometric theory of functions of a complex variable. In: Translation of Math. Monographs, Vol. 26. American Math. Society, 1969

  21. Nehari Z. Conformal Mapping. New York: McGraw-Hill Book Company, 1952

    MATH  Google Scholar 

  22. Rudin W. Real and Complex Analysis. 3rd ed. New York: McGraw-Hill Company, 1987

    MATH  Google Scholar 

  23. Yang L. A dimension-decreasing algorithm with generic program for automated inequalities proving. High Tech Lett (in Chinese), 1998, 8(7): 20–25

    Google Scholar 

  24. Yang L. Recent advances in automated theorem proving on inequalities. J Comput Sci Tech, 1999, 14(5): 434–446

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang L, Hou X R, Xia B C. A complete algorithm for automated discovering of a class of inequality-type theorems. Sci China Ser F-Inf Sci, 2001, 44(1): 33–49

    MATH  MathSciNet  Google Scholar 

  26. Yang L, Xia B C. Real solution classifications for parametric semi-algebraic systems. In: Dolzmann A, Seidl A, Sturm T, eds. Algorithmic Algebra and Logic, Proceedings of the A3L 2005, Herstellung und Verlag, Norderstedt, 2005, 281–289

    Google Scholar 

  27. Yang l, Xia S H. Automated proving for a class of constructive geometric inequalities, Chinese J Comput (in Chinese), 2003, 26(7): 769–778

    MathSciNet  Google Scholar 

  28. Gantmacher F. Matrix Theory. New York: Chelsea, 1959

    Google Scholar 

  29. Yang L, Zhang J Z, Hou X R. Non-linear equations systems and automated theorem proving, Series in Nonlinear Sciences (in Chinese). Shanghai: Shanghai Press of Science, Technology, and Education, 1996

    Google Scholar 

  30. Tarski A. A Decision Method for Elementary Algebra and Geometry. Berkeley: The University of California Press, 1951

    MATH  Google Scholar 

  31. Anderson B, Bose N, Jury E. Output feedback stabilization and related problems — solution via decision methods. IEEE T Automat Contr, 1975, 20(1): 53–66

    Article  MATH  MathSciNet  Google Scholar 

  32. Wu W T. On the decision problem and mechanization of theorem-proving in elementary-geometry. Sci China, 1978, (21): 159–172

  33. Wu W T. Mechanical Theorem Proving in Geometries: Basic Principles (translated from the Chinese by Jin X, Wang D). New York: Springer-Verlag, 1984

    Google Scholar 

  34. Wu W T. Mathematics mechanization, Series in Mathematics Mechanization (in Chinese). Beijing: Science Press, 2003

    Google Scholar 

  35. Arnon D S, Collins G E, McCallum S. Cylindrical algebraic decomposition I: The basic algorithm. SIAM J Comput, 1984, 13(4): 865–877

    Article  MathSciNet  Google Scholar 

  36. Arnon D S, Collins G E, McCallum S. Cylindrical algebraic decomposition II: An adjacency algorithm for the plane. SIAM J Comput, 1984, 13(4): 878–889

    Article  MathSciNet  Google Scholar 

  37. Collins G E, Hong H. Partial cylindrical algebraic decomposition for quantifier elimination. J Symb Comput, 1991, 12(3): 299–328

    Article  MATH  MathSciNet  Google Scholar 

  38. Yang L, Hou X R, Zeng Z B. A complete discrimination system for polynomials. Sci China Ser E-Tech Sci, 1996, 39(6): 628–646

    MATH  MathSciNet  Google Scholar 

  39. Nie Y Y. Criteria for the stability of polynomials. Mechanics (in Chinese), 1976, (2): 110–116

  40. Wu W T. On a finiteness theorem about problem involving inequalities. Syst Sci Math Sci, 1994, 7(2): 193–200

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu WenSheng.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 60572056, 60528007, 60334020, 60204006, 10471044, and 10372002), the National Key Basic Research and Development Program (Grant Nos. 2005CB321902, 2004CB318003, 2002CB312200), the Overseas Outstanding Young Researcher Foundation of Chinese Academy of Sciences and the Program of National Key Laboratory of Intelligent Technology and Systems of Tsinghua University

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Q., Wang, L., Xia, B. et al. Solution to the Generalized Champagne Problem on simultaneous stabilization of linear systems. SCI CHINA SER F 50, 719–731 (2007). https://doi.org/10.1007/s11432-007-0053-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-007-0053-2

Keywords

Navigation