Skip to main content
Log in

Survey on research and development of on-orbit active debris removal methods

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Space debris is growing dramatically with the rapid pace of human exploration of space, which seriously threatens the safety of artificial spacecraft in orbit. Therefore, the active debris removal (ADR) is important. This review aims to review the ADR methods and to advance related research in the future. The current research and development status are clearly demonstrated by mapping knowledge domain and charts. In this paper, the latest research results are classified and summarized in detail from two aspects of space debris capture and removal. The scheme comparison and evaluation of all ADR methods are performed, and the applicable scopes of various methods are summarized. Each ADR method is scored using a cobweb evaluation model based on six indicators. Future development of ADR is discussed to promote further research interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ESA Space Debris Office. ESA’s Annual Space Environment Report.

  2. Aglietti G S, Taylor B, Fellowes S, et al. RemoveDEBRIS: An in-orbit demonstration of technologies for the removal of space debris. Aeronaut J, 2020, 124: 1–23

    Google Scholar 

  3. Kessler D J, Cour-Palais B G. Collision frequency of artificial satellites: The creation of a debris belt. J Geophys Res, 1978, 83: 2637–2646

    Google Scholar 

  4. Committee on the Peaceful Uses of Outer Space. Technical report on space debris. 1999

  5. Chatterjee J. Legal issues relating to unauthorised space debris remediation. In: 65th International Astronautical Congress. Toronto, 2014

  6. Grujicic M, Pandurangan B, Zhao C L, et al. Hypervelocity impact resistance of reinforced carbon-carbon/carbon-foam thermal protection systems. Appl Surf Sci, 2006, 252: 5035–5050

    Google Scholar 

  7. Liu H, Liu Y, Tan C, et al. Analysis and suggestion on key technology of space debris removal. Spacecr Eng, 2017, 26: 105–113

    Google Scholar 

  8. Pelton J N. Coping with the hazards of space debris. In: Pelton J N, Madry S, Camacho-Lara S, eds. Handbook of Satellite Applications. New York: Springer New York, 2016. 1–12

    Google Scholar 

  9. Mark C P, Kamath S. Review of active space debris removal methods. Space Policy, 2019, 47: 194–206

    Google Scholar 

  10. Chiu S W. Promoting international co-operation in the age of global space governance—A study on on-orbit servicing operations. Acta Astronaut, 2019, 161: 375–381

    Google Scholar 

  11. Anz-Meador P D, Opiela J N, Shoots D, et al. History of On-Orbit Satellite Fragmentations. 15th ed. Houston: NASA Johnson Space Center, 2018

    Google Scholar 

  12. Liou J C, Kieffer M, Drew A, et al. The 2019 U.S. Government Orbital Debris Mitigation Standard Practices. Orbital Debris Quarterly News, 2020, 24: 4–8

    Google Scholar 

  13. Hakima H, Emami M R. Assessment of active methods for removal of LEO debris. Acta Astronaut, 2018, 144: 225–243

    Google Scholar 

  14. Kelso T. NORAD two-line element sets: Current data. The Center for Space Standards & Innovation. Technical Report, 2017, https://www.celestrak.com/NORAD/elements/

  15. Liou J C, Johnson N L, Hill N M. Controlling the growth of future LEO debris populations with active debris removal. Acta Astronaut, 2010, 66: 648–653

    Google Scholar 

  16. Liou J C, Johnson N L. Characterization of the cataloged Fengyun-1C fragments and their long-term effect on the LEO environment. Adv Space Res, 2009, 43: 1407–1415

    Google Scholar 

  17. Dobos B, Prazak J. To clear or to eliminate? Active debris removal systems as antisatellite weapons. Space Policy, 2019, 47: 217–223

    Google Scholar 

  18. Kosambe S. Mission shakti aka project XSV-1: India’s first anti-satellite test (ASAT). J Aircr Spacecr Tech, 2019, 3: 172–182

    Google Scholar 

  19. Rathgeber W, Remuss N L, Schrogl K U. Space security and the European code of conduct for outer space activities. In: Disarmament Forum, 2009

  20. Liou J C, Johnson N L. A sensitivity study of the effectiveness of active debris removal in LEO. Acta Astronaut, 2009, 64: 236–243

    Google Scholar 

  21. van der Pas N, Lousada J, Terhes C, et al. Target selection and comparison of mission design for space debris removal by DLR’s advanced study group. Acta Astronaut, 2014, 102: 241–248

    Google Scholar 

  22. Bonnal C, Ruault J M, Desjean M C. Active debris removal: Recent progress and current trends. Acta Astronaut, 2013, 85: 51–60

    Google Scholar 

  23. Couzin P, Strippoli L, Roser X. Comparison of active debris removal mission architectures. In: Proceedings of the 63rd International Astronautical Congress, 2012

  24. Palmer C. Space trash removal. Engineering, 2019, 5: 607–608

    Google Scholar 

  25. Liu J, Tong Y, Liu Y, et al. Development of a novel end-effector for an on-orbit robotic refueling mission. IEEE Access, 2020, 8: 17762–17778

    Google Scholar 

  26. Wilde R C, McBarron Ii J W, Manatt S A, et al. One hundred US EVAs: A perspective on spacewalks. Acta Astronaut, 2002, 51: 579–590

    Google Scholar 

  27. Oda M. Experiences and lessons learned from the ETS-VII robot satellite. In: Proceedings 2000 ICRA, Millennium Conference. San Francisco, 2000

  28. Inaba N, Oda M. Autonomous satellite capture by a space robot: World first on-orbit experiment on a Japanese robot satellite ETS-VII. In: Proceedings 2000 ICRA. San Francisco, 2000

  29. Bischof B. ROGER-Robotic geostationary orbit restorer. In: 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Bremen, 2003

  30. Kassebom M. Roger—An advanced solution for a geostationary service satellite. In: 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Bremen, 2003

  31. Huang P, Zhang F, Chen L, et al. A review of space tether in new applications. Nonlinear Dyn, 2018, 94: 1–19

    Google Scholar 

  32. Clean Space. E. deorbit Implementation Plan. Eur Space Rea Technol Centre, 2015

  33. Wolf T. Deutsche Orbitale Servicing Mission. Space-Administration of the German Aerospace Center. Technical Report, 2011, http://robotics.estec.esa.int/ASTRA/Astra2011/Presentations/Plenary%202/04_wolf.pdf

  34. Rupp T, Boge T, Kiehling R, et al. Flight dynamics challenges of the German on-orbit servicing mission DEOS. In: 21st International Symposium on Space Flight Dynamics. German Aerospace Agency Toulouse. France, 2009

  35. Kawamoto S, Makida T, Sasaki F, et al. Precise numerical simulations of electrodynamic tethers for an active debris removal system. Acta Astronaut, 2006, 59: 139–148

    Google Scholar 

  36. Nishida S I, Kawamoto S, Okawa Y, et al. Space debris removal system using a small satellite. Acta Astronaut, 2009, 65: 95–102

    Google Scholar 

  37. Kaiser C, Sjöberg F, Delcura J M, et al. SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO. Acta Astronaut, 2008, 63: 400–410

    Google Scholar 

  38. Forshaw J L, Aglietti G S, Navarathinam N, et al. RemoveDEBRIS: An in-orbit active debris removal demonstration mission. Acta Astronaut, 2016, 127: 448–463

    Google Scholar 

  39. Forshaw J L, Aglietti G S, Salmon T, et al. Final payload test results for the RemoveDebris active debris removal mission. Acta Astronaut, 2017, 138: 326–342

    Google Scholar 

  40. Forshaw J L, Aglietti G S, Fellowes S, et al. The active space debris removal mission RemoveDebris. Part 1: From concept to launch. Acta Astronaut, 2020, 168: 293–309

    Google Scholar 

  41. Aglietti G S, Taylor B, Fellowes S, et al. The active space debris removal mission RemoveDebris. Part 2: In orbit operations. Acta Astronaut, 2020, 168: 310–322

    Google Scholar 

  42. Pisseloup A, Estable S, Pegg K, et al. Airbus Defence and Space’s vision and activities in active debris removal and on-orbit servicing. In: CNES 4th International Workshop on Space Debris Modelling and Remediation. Paris, 2016

  43. Chiesa A, Fossati F, Gambacciani G, et al. Enabling technologies for active space debris removal: The cadet project. In: Sgobba T, Rongier I, eds. Space Safety is No Accident. Berlin: Springer, 2015

    Google Scholar 

  44. Nakanishi H, Yoshida K. The TAKO (target collaborativize) flyer: A new concept for future satellite servicing. In: Rycroft M, Crosby N, eds.Smaller Satellites: Bigger Business? Springer, 2002. 397–399

  45. Antonetti S. D-SAT mission: An in-orbit demonstration of autonomous decommissioning capabilities in changing space debris mitigation requirements scenario. In: CNES 4th International Workshop on Space Debris Modelling and Remediation. Paris, 2016

  46. Bombardelli C, Pelaez J. Ion beam shepherd for contactless space debris removal. J Guid Control Dyn, 2011, 34: 916–920

    Google Scholar 

  47. Parness A. Orbital debris removal with gecko-like adhesives: Technology development and mission design. In: 66th International Astronautical Congress. Jerusalem, 2015

  48. Trentlage C, Stoll E. The applicability of gecko adhesives in a docking mechanism for active debris removal missions. In: 13th Symposium on Advanced Space Technologies in Robotics and Automation. Noordwijk, 2015

  49. Kasai T, Oda M, Suzuki T. Results of the ETS-7 Mission-Rendezvous docking and space robotics experiments. In: Proceedings Fifth International Symposium on Artificial Intelligencc, Robotics and Automation in Space (ESA SP-440). 1999

  50. Whelan D A, Adler E A, Wilson III S B, et al. Darpa orbital express program: Effecting a revolution in space-based systems. In: Small Payloads in Space. International Society for Optics and Photonics, 2000. 48–56

  51. Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing. Prog Aeosp Sci, 2014, 68: 1–26

    Google Scholar 

  52. Shan M, Guo J, Gill E. Review and comparison of active space debris capturing and removal methods. Prog Aerosp Sci, 2016, 80: 18–32

    Google Scholar 

  53. Mo Y, Jiang Z H, Li H, et al. A novel space target-tracking method based on generalized Gaussian distribution for on-orbit maintenance robot in Tiangong-2 space laboratory. Sci China Tech Sci, 2019, 62: 1045–1054

    Google Scholar 

  54. Pelton J N. On-orbit servicing and retrofitting. In: Handbook of Satellite Applications, 2017: 1237–1255

  55. Huang Z, Lu Y, Wen H, et al. Ground-based experiment of capturing space debris based on artificial potential field. Acta Astronaut, 2018, 152: 235–241

    Google Scholar 

  56. Zhang X, Liu J. Effective motion planning strategy for space robot capturing targets under consideration of the berth position. Acta Astronaut, 2018, 148: 403–416

    Google Scholar 

  57. Mu Z, Xu W, Liang B. Avoidance of multiple moving obstacles during active debris removal using a redundant space manipulator. Int J Control Autom Syst, 2017, 15: 815–826

    Google Scholar 

  58. Seweryn K, Sasiadek J Z. Satellite angular motion classification for active on-orbit debris removal using robots. Aircr Eng Aerosp Tech, 2019, 91: 317–332

    Google Scholar 

  59. Yoshida K. Achievements in space robotics. IEEE Robot Automat Mag, 2009, 16: 20–28

    Google Scholar 

  60. Yoshida K, Kurazume R, Umetani Y. Dual arm coordination in space free-flying robot. In: Proceedings 1991 IEEE International Conference on Robotics and Automation. Sacramento, 1991

  61. Zhang X, Liu J G, Gao Q, et al. Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique. Nonlinear Dyn, 2020, 100: 2449–2467

    Google Scholar 

  62. Zhang X, Liu J G, Feng J K, et al. Effective capture of nongraspable objects for space robots using geometric cage pairs. IEEE/ASME Trans Mech, 2020, 25: 95–107

    Google Scholar 

  63. Peng J, Xu W, Pan E Z, et al. Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation. Acta Astronaut, 2019, 162: 589–607

    Google Scholar 

  64. Liu J, Huang Q, Yang T, et al. Whole-body compliance for multi-arm space robotic capturing of large tumbling target in connection compliant phase. Adv Mech Eng, 2018, 10, doi: https://doi.org/10.1177/1687814018767196

  65. Xu W, Hu Z, Yan L, et al. Modeling and planning of a space robot for capturing tumbling target by approaching the dynamic closest point. Multibody Syst Dyn, 2019, 47: 203–241

    MathSciNet  MATH  Google Scholar 

  66. Chu Z, Ma Y, Hou Y, et al. Inertial parameter identification using contact force information for an unknown object captured by a space manipulator. Acta Astronaut, 2017, 131: 69–82

    Google Scholar 

  67. Ma O, Dang H, Pham K. On-orbit identification of inertia properties of spacecraft using a robotic arm. J Guid Control Dyn, 2008, 31: 1761–1771

    Google Scholar 

  68. Meng Q L, Liang J X, Ma O. Identification of all the inertial parameters of a non-cooperative object in orbit. Aerosp Sci Tech, 2019, 91: 571–582

    Google Scholar 

  69. Aghili F, Parsa K. Motion and parameter estimation of space objects using laser-vision data. J Guid Control Dyn, 2009, 32: 538–550

    Google Scholar 

  70. Feng F, Tang L N, Xu J F, et al. A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture. Sci China Tech Sci, 2016, 59: 1621–1638

    Google Scholar 

  71. Li X A, Sun K, Liu H. Design of a novel deployable mechanism for capturing tumbling debris. Trans Can Soc Mech Eng, 2019, 43: 294–305

    Google Scholar 

  72. Zheng Y, Lei G, Zhang M, et al. Mechanical design and analysis of a gripper for non-cooperative target capture in space. Adv Mech Eng 2018, 10, doi: https://doi.org/10.1177/1687814018810649

  73. Sun C, Wan W, Deng L. Adaptive space debris capture approach based on origami principle. Int J Adv Robot Syst, 2019, 16, doi: https://doi.org/10.1177/1729881419885219

  74. Parness A, Heverly M, Hilgemann E, et al. On-off adhesive grippers for earth-orbit. In: AIAA SPACE 2013 Conference and Exposition. San Diego, 2013

  75. Jiang H, Hawkes E W, Arutyunov V, et al. Scaling controllable adhesives to grapple floating objects in space. In: 2015 IEEE ICRA. Seattle. 2015

  76. Bylard A, MacPherson R, Hockman B, et al. Robust capture and deorbit of rocket body debris using controllable dry adhesion. In: 2017 IEEE Aerospace Conference. Big Sky MT, 2017

  77. Han L, Yang J, Zhao Y, et al. Assumption on flexible adaptive orbital debris capture device based on octopus-inspired pneumatic soft robot. Manned Spaceflight, 2017, 23: 469–472

    Google Scholar 

  78. Biesbroek R. The e. deorbit study in the concurrent design facility. In: Proceedings ESOC Workshop on Active Space Debris Removal, 2012

  79. Forshaw J, Aglietti G, Salmon T, et al. The RemoveDebris ADR mission: Preparing for an international space station launch. In: 7th European Conference on Space Debris. Darmstadt, 2017

  80. McMahan W, Chitrakaran V, Csencsits M, et al. Field trials and testing of the OctArm continuum manipulator. In: Proceedings 2006 IEEE ICRA. Orlando, 2006

  81. Choi J, Jung J, Lee D, et al. Articulated linkage arms based reliable capture device for janitor satellites. Acta Astronaut, 2019, 163: 91–99

    Google Scholar 

  82. David S, Sharf I, Sagnières L, et al. A deployable mechanism concept for the collection of small-to-medium-size space debris. Adv Space Res, 2018, 61: 1286–1297

    Google Scholar 

  83. St-Onge D, Gosselin C. Synthesis and design of a one degree-of-freedom planar deployable mechanism with a large expansion ratio. J Mech Robot, 2016, 8: 021025

    Google Scholar 

  84. Yariv A. Catching the wave. IEEE J Sel Top Quantum Electron, 2000, 6: 1478–1489

    Google Scholar 

  85. Axthelm R, Klotz B, Retat I, et al. Net capture mechanism for debris removal demonstration mission. In: ESA 7th European Conference on Space Debris. Darmstadt, 2017

  86. Aglietti G, Taylor B, Fellowes S, et al. Remove debris mission. Part 2: In-orbit operations. Acta Astronaut, 2020, 168: 310–322

    Google Scholar 

  87. Chu Z, Wei T, Shen T, et al. Optimal commands based multi-stage drag de-orbit design for a tethered system during large space debris removal. Acta Astronaut, 2019, 163: 238–249

    Google Scholar 

  88. Golebiowski W, Michalczyk R, Dyrek M, et al. Validated simulator for space debris removal with nets and other flexible tethers applications. Acta Astronaut, 2016, 129: 229–240

    Google Scholar 

  89. Si J, Pang Z, Du Z, et al. Dynamics modeling and simulation of self-collision of tether-net for space debris removal. Adv Space Res, 2019, 64: 1675–1687

    Google Scholar 

  90. Gao Q, Zhang Q, Feng Z, et al. Study on launch scheme of space-net capturing system. PLoS ONE, 2017, 12: e0183770

    Google Scholar 

  91. Shan M, Guo J, Gill E. Contact dynamics on net capturing of tumbling space debris. J Guid Control Dyn, 2018, 41: 2063–2072

    Google Scholar 

  92. Medina A, Cercós L, Stefanescu R M, et al. Validation results of satellite mock-up capturing experiment using nets. Acta Astronaut, 2017, 134: 314–332

    Google Scholar 

  93. Shan M, Guo J, Gill E. Deployment dynamics of tethered-net for space debris removal. Acta Astronaut, 2017, 132: 293–302

    Google Scholar 

  94. Mikkola A M, Shabana A A. A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications. Multibody Syst Dyn, 2003, 9: 283–309

    MathSciNet  MATH  Google Scholar 

  95. Dufva K, Shabana A A. Analysis of thin plate structures using the absolute nodal coordinate formulation. P I Mech Eng K-J Mul, 2005, 219: 345–355

    Google Scholar 

  96. Lim J, Chung J. Removal of captured space debris using a tethered satellite system. J Mech Sci Technol, 2019, 33: 1131–1140

    Google Scholar 

  97. Zhang F, Huang P. Releasing dynamics and stability control of maneuverable tethered space net. IEEE/ASME Trans Mech, 2017, 22: 983–993

    Google Scholar 

  98. Liu Y, Huang P, Zhang F, et al. Robust distributed consensus for deployment of tethered space net robot. Aerosp Sci Tech, 2018, 77: 524–533

    Google Scholar 

  99. Chu Z, Di J, Cui J. Hybrid tension control method for tethered satellite systems during large tumbling space debris removal. Acta Astronaut, 2018, 152: 611–623

    Google Scholar 

  100. Jia C, Meng Z, Huang P. Attitude control for tethered towing debris under actuators and dynamics uncertainty. Adv Space Res, 2019, 64: 1286–1297

    Google Scholar 

  101. Benvenuto R, Lavagna M, Salvi S. Multibody dynamics driving GNC and system design in tethered nets for active debris removal. Adv Space Res, 2016, 58: 45–63

    Google Scholar 

  102. Pirat C, Richard-Noca M, Paccolat C, et al. Mission design and GNC for in-orbit demonstration of active debris removal technologies with cubesats. Acta Astronaut, 2017, 130: 114–127

    Google Scholar 

  103. Ledkov A, Aslanov V. Evolution of space tethered system’s orbit during space debris towing taking into account the atmosphere influence. Nonlinear Dyn, 2019, 96: 2211–2223

    Google Scholar 

  104. Botta E M, Sharf I, Misra A K. Simulation of tether-nets for capture of space debris and small asteroids. Acta Astronaut, 2019, 155: 448–461

    Google Scholar 

  105. Xu B, Yang Y, Yan Y, et al. Bionics design and dynamics analysis of space webs based on spider predation. Acta Astronaut, 2019, 159: 294–307

    Google Scholar 

  106. Billot C, Ferraris S, Rembala R, et al. E. deorbit: Feasibility study for an active debris removal. In: 3rd European Workshop on Space Debris Modeling and Remediation. Paris, 2014

  107. Biesbroek R, Innocenti L, Estable S, et al. The e. deorbit mission: Results of ESA’s phase A studies for an active debris removal mission. In: Proceedings 66th International Astronautical Congress. Jerusalem, 2015

  108. Aglietti G, Forshaw J, Viquerat A, et al. An overview of the mechanisms and deployables on the removedebris ADR mission. In: European Conference on Spacecraft Structures Materials and Environmental Testing. Noordwijk, 2018

  109. Taylor B, Aglietti G S, Fellowes S, et al. The in-orbit technology demonstrations of the RemoveDebris mission. In: 70th International Astronautical Congress, International Astronautical Federation. 2019

  110. Reed J, Busquets J, White C. Grappling system for capturing heavy space debris. In: 2nd European Workshop on Active Debris Removal. Centre National d’Etudes Spatiales. Paris, France, 2012

  111. Peters T V, Briz Valero J F, Escorial Olmos D, et al. Attitude control analysis of tethered de-orbiting. Acta Astronaut, 2018, 146: 316–331

    Google Scholar 

  112. Zhao Y, Huang P, Zhang F, et al. Contact dynamics and control for tethered space net robot. IEEE Trans Aerosp Electron Syst, 2019, 55: 918–929

    Google Scholar 

  113. Huang P, Wang D, Zhang F, et al. Postcapture robust nonlinear control for tethered space robot with constraints on actuator and velocity of space tether. Int J Robust Nonlinear Control, 2017, 27: 2824–2841

    MathSciNet  MATH  Google Scholar 

  114. Hu Y, Huang P, Meng Z, et al. Approaching control for tethered space robot based on disturbance observer using super twisting law. Adv Space Res, 2018, 61: 2344–2351

    Google Scholar 

  115. Zhang F, Huang P. Stability control of a flexible maneuverable tethered space net robot. Acta Astronaut, 2018, 145: 385–395

    Google Scholar 

  116. Zhao Y, Huang P, Zhang F. Dynamic modeling and super-twisting sliding mode control for tethered space robot. Acta Astronaut, 2018, 143: 310–321

    Google Scholar 

  117. Zhang F, Huang P, Meng Z, et al. Dynamics modeling and model selection of space debris removal via the Tethered Space Robot. Proc Inst Mech Eng Part G-J Aerosp Eng, 2017, 231: 1873–1897

    Google Scholar 

  118. Wang B, Meng Z, Huang P. Attitude control of towed space debris using only tether. Acta Astronaut, 2017, 138: 152–167

    Google Scholar 

  119. Zhang Z, Yu Z, Zhang Q, et al. Dynamics and control of a tethered space-tug system using Takagi-Sugeno fuzzy methods. Aerosp Sci Tech, 2019, 87: 289–299

    Google Scholar 

  120. Qi R, Misra A K, Zuo Z. Active debris removal using double-tethered space-tug system. J Guid Control Dyn, 2017, 40: 720–728

    Google Scholar 

  121. Kang J, Zhu Z H. Dynamics and control of de-spinning giant asteroids by small tethered spacecraft. Aerosp Sci Technol, 2019, 94, doi: https://doi.org/10.1016/j.ast.2019.105394

  122. Li P, Zhong R, Lu S. Optimal control scheme of space tethered system for space debris deorbit. Acta Astronaut, 2019, 165: 355–364

    Google Scholar 

  123. Razzaghi P, Al Khatib E, Bakhtiari S. Sliding mode and SDRE control laws on a tethered satellite system to de-orbit space debris. Adv Space Res, 2019, 64: 18–27

    Google Scholar 

  124. Sun X, Zhong R. Switched propulsion force libration control for the low-thrust space tug system. Aerosp Sci Tech, 2018, 80: 281–287

    Google Scholar 

  125. Berend N, Olive X. Bi-objective optimization of a multiple-target active debris removal mission. Acta Astronaut, 2016, 122: 324–335

    Google Scholar 

  126. Bondarenko S, Lyagushin S, Shifrin G. Prospects of using lasers and military space technology for space debris removal. In: 2th European Conference on Space Debris. Darmstadt, 1997

  127. Phipps C R, Reilly J P. ORION: Clearing near-Earth space debris in two years using a 30-kW repetitively-pulsed laser. In: XI International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference. Edinburgh, 1997

  128. Yu H, Li H, Wang Y, et al. Brief review on pulse laser propulsion. Optics Laser Tech, 2018, 100: 57–74

    Google Scholar 

  129. Nishida S I, Kawamoto S. Strategy for capturing of a tumbling space debris. Acta Astronaut, 2011, 68: 113–120

    Google Scholar 

  130. Esmiller B, Jacquelard C, Eckel H A, et al. Space debris removal by ground-based lasers: Main conclusions of the European project CLEANSPACE. Appl Opt, 2014, 53: I45

    Google Scholar 

  131. Calabro M, Perrot L. XXI century tower: Laser orbital debris removal and collision avoidance. Acta Astronaut, 2019, 158: 220–230

    Google Scholar 

  132. Fang Y, Pan J, Luo Y, et al. Effects of deorbit evolution on space-based pulse laser irradiating centimeter-scale space debris in LEO. Acta Astronaut, 2019, 165: 184–190

    Google Scholar 

  133. Gjesvold E, Straub J. Analysis of a space debris laser removal system. In: Laser Technology for Defense and Security XIII. Anaheim, 2017

  134. Phipps C R, Baker K L, Libby S B, et al. Removing orbital debris with lasers. Adv Space Res, 2012, 49: 1283–1300

    Google Scholar 

  135. Soulard R, Quinn M N, Tajima T, et al. ICAN: A novel laser architecture for space debris removal. Acta Astronaut, 2014, 105: 192–200

    Google Scholar 

  136. Wang H, Ji X L, Deng Y, et al. Effect of spatial coherence on laser space-debris removal in the inhomogeneous atmosphere. J Quant Spectr Radiative Transfer, 2019, 235: 244–249

    Google Scholar 

  137. Scharring S, Wilken J, Eckel H A. Laser-based removal of irregularly shaped space debris. Opt Eng, 2017, 56: 011007

    Google Scholar 

  138. Scharring S, Lorbeer R A, Eckel H A. Heat accumulation in laser-based removal of space debris. AIAA J, 2018, 56: 2506–2508

    Google Scholar 

  139. Scharring S, Eisert L, Lorbeer R A, et al. Momentum predictability and heat accumulation in laser-based space debris removal. Opt Eng, 2019, 58: 1

    Google Scholar 

  140. Bombardelli C, Pelaez J. Ion beam shepherd for asteroid deflection. J Guidance Control Dyn, 2011, 34: 1270–1272

    Google Scholar 

  141. Urrutxua H, Bombardelli C, Hedo J M. A preliminary design procedure for an ion-beam shepherd mission. Aerosp Sci Tech, 2019, 88: 421–435

    Google Scholar 

  142. Khoroshylov S. Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations. Acta Astronaut, 2019, 164: 254–261

    Google Scholar 

  143. Merino M, Ahedo E, Bombardelli C, et al. Ion beam shepherd satellite for space debris removal. Progr Propul Physics, 2013, 4: 789–802

    Google Scholar 

  144. Cichocki F, Merino M, Ahedo E, et al. Electric propulsion subsystem optimization for “ion beam shepherd” missions. J Propulsion Power, 2017, 33: 370–378

    Google Scholar 

  145. Cichocki F, Merino M, Ahedo E. Spacecraft-plasma-debris interaction in an ion beam shepherd mission. Acta Astronaut, 2018, 146: 216–227

    Google Scholar 

  146. Balashov V, Cherkasova M, Kruglov K, et al. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects. Rev Sci Instrum, 2017, 88, doi: https://doi.org/10.1063/1.4998247

  147. Takahashi K, Charles C, Boswell R W, et al. Demonstrating a new technology for space debris removal using a bi-directional plasma thruster. Sci Rep, 2018, 8: 14417

    Google Scholar 

  148. Betts B, Spencer D A, Nye B, et al. Lightsail 2: Controlled solar sailing using a CubeSat. In: The 4th International Symposium on Solar Sailing. Kyoto, 2017

  149. Ceriotti M, McInnes C R. Hybrid solar sail and solar electric propulsion for novel Earth observation missions. Acta Astronaut, 2011, 69: 809–821

    Google Scholar 

  150. Kelly P, Bevilacqua R. An optimized analytical solution for geostationary debris removal using solar sails. Acta Astronaut, 2019, 162: 72–86

    Google Scholar 

  151. Mori O, Sawada H, Funase R, et al. First solar power sail demonstration by IKAROS. T Jpn Soc Aeronaut S, 2010, 8: 425–431

    Google Scholar 

  152. Lappas V, Adeli N, Visagie L, et al. CubeSail: A low cost CubeSat based solar sail demonstration mission. Adv Space Res, 2011, 48: 1890–1901

    Google Scholar 

  153. Mansell J, Spencer D A, Plante B, et al. Orbit and attitude performance of the LightSail 2 solar sail spacecraft. In: AIAA Scitech 2020 Forum. Orlando, 2020

  154. Kelly P W, Bevilacqua R, Mazal L, et al. TugSat: Removing space debris from geostationary orbits using solar sails. J Spacecr Rockets, 2018, 55: 437–450

    Google Scholar 

  155. Schaub H, Moorer Jr D F. Geosynchronous large debris reorbiter: Challenges and prospects. J Astronaut Sci, 2012, 59: 161–176

    Google Scholar 

  156. King L B, Parker G G, Deshmukh S, et al. Study of interspacecraft coulomb forces and implications for formation flying. J Propulsion Power, 2003, 19: 497–505

    Google Scholar 

  157. Berryman J, Schaub H. Analytical charge analysis for two- and three-craft coulomb formations. J Guid Control Dyn, 2007, 30: 1701–1710

    Google Scholar 

  158. Toyoda K, Cho M, Masui H, et al. Preliminary investigation of space debris removal method using electrostatic force in space plasma. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando, 2009

  159. Aslanov V, Yudintsev V. Motion control of space tug during debris removal by a coulomb force. J Guid Control Dyn, 2018, 41: 1476–1484

    Google Scholar 

  160. Feng G, Li W, Zhang H. Geomagnetic energy approach to space debris deorbiting in a low Earth orbit. Int J Aerospace Eng 2019 doi: https://doi.org/10.1155/2019/5876861

  161. Shuvalov V A, Gorev N B, Tokmak N A, et al. Drag on a spacecraft produced by the interaction of its magnetic field with the Earth’s ionosphere. Physical modelling. Acta Astronaut, 2020, 166: 41–51

    Google Scholar 

  162. Andrenucci M, Pergola P, Ruggiero A, et al. Active removal of space debris: Expanding foam application for active debris removal. Final Report, ESA, 2011

  163. Pigliaru L, Borriello C, Piergentili F, et al. Expanded polyurethane foam for active debris removal. International Astronautical Federation, 2014

  164. Sinn T, Thakore T, Maier P. Space debris removal using self-inflating adaptive membrane. In: Proceedings of the 63rd International Astronautical Congress. Naples, 2012

  165. Nock K, Gates K, Aaron K, et al. Gossamer orbit lowering device (GOLD) for safe and efficient de-orbit. In: AIAA/AAS Astrodynamics specialist conference. Toronto, 2010

  166. Secheli G, Viqueraty A, Agliettiz G. Mechanical development of a novel inflatable and rigidizable structure. In: 3rd AIAA Spacecraft Structures Conference. San Diego, 2016

  167. Ruggiero P P A, Andrenucci M, Summerer L. Low-thrust missions for expanding foam space debris removal. In: 32nd International Electric Propulsion Conference. Wiesbaden, 2011

  168. Makihara K, Kondo S. Structural evaluation for electrodynamic tape tethers against hypervelocity space debris impacts. J Spacecr Rockets, 2018, 55: 462–472

    Google Scholar 

  169. Cosmo M L, Lorenzini E C. Tethers in space handbook. NASA Technical Reports Server, 1997

  170. van der Heide E J, Kruijff M. Tethers and debris mitigation. Acta Astronaut, 2001, 48: 503–516

    Google Scholar 

  171. Ishige Y, Kawamoto S, Kibe S. Study on electrodynamic tether system for space debris removal. Acta Astronaut, 2004, 55: 917–929

    Google Scholar 

  172. Takeichi N. Practical operation strategy for deorbit of an electrodynamic tethered system. J Spacecr Rockets, 2006, 43: 1283–1288

    Google Scholar 

  173. Pearson J, Levin E, Oldson J, et al. Electrodynamic debris eliminator (EDDE): Design, operation, and ground support. In: Advanced Maui Optical and Space Surveillance Technologies Conference. Maui, 2010

  174. Inarrea M, Lanchares V, Pascual A I, et al. Attitude stabilization of electrodynamic tethers in elliptic orbits by time-delay feedback control. Acta Astronaut, 2014, 96: 280–295

    Google Scholar 

  175. Zhong R, Zhu Z H. Long-term libration dynamics and stability analysis of electrodynamic tethers in spacecraft deorbit. J Aerosp Eng, 2014, 27: 04014020

    Google Scholar 

  176. Dong X, Li Y, Zhang Z, et al. Research on the material and structure of space electrodynamic tether. In: 40th COSPAR Scientific Assembly. Moscow, 2014

  177. Zhang M X, Cai G B, He B J, et al. Experimental and numerical analysis of the heat flux characteristic of the plume of a 120-N thruster. Sci China Tech Sci, 2019, 62: 1854–1860

    Google Scholar 

  178. Gregory D, Mergen J, Ridley A. Space Debris Elimination (Spade) Phase I Final. NASA Technical Reports Server, 2012

  179. Kofford A S. System and method for creating an artificial atmosphere for the removal of space debris. US Patent, US20130082146A1, 2011-04-04

  180. Gregory D A, Mergen J F. Space debris removal using upper atmosphere and vortex generator. US Patent, US8657235B2, 2014-02-25

  181. Hillebrandt M, Meyer S, Zander M E, et al. Deployment testing of the de-orbit sail flight hardware. In: 2nd AIAA Spacecraft Structures Conference. Kissimmee, 2015

  182. Underwood C, Viquerat A, Schenk M, et al. InflateSail de-orbit flight demonstration results and follow-on drag-sail applications. Acta Astronaut, 2019, 162: 344–358

    Google Scholar 

  183. Taylor B, Fellowes S, Dyer B, et al. A modular drag-deorbiting sail for large satellites in low Earth orbit. In: AIAA Scitech 2020 Forum. Orlando, 2020

  184. Liu J, Zhang X, Hao G. Survey on research and development of reconfigurable modular robots. Adv Mech Eng, 2016, 8: 168781401665959

    Google Scholar 

  185. Biondi G, Mauro S, Pastorelli S, et al. Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions. Acta Astronaut, 2018, 146: 332–338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinGuo Liu.

Additional information

This work was supported by the National Key R&D Program of China (Grant No. 2018YFB1304600), the National Natural Science Foundation of China (Grant No. 51775541), the CAS Interdisciplinary Innovation Team (Grant No. JCTD-2018-11), the State Key Laboratory of Robotics Foundation (Grant No. Y91Z0303) and the Hundred-Talent Program (Chinese Academy of Sciences) (Grant No. Y8A3210304).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Liu, J. & Wu, C. Survey on research and development of on-orbit active debris removal methods. Sci. China Technol. Sci. 63, 2188–2210 (2020). https://doi.org/10.1007/s11431-020-1661-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-020-1661-7

Navigation