Skip to main content
Log in

Periodically poled LiNbO3 crystals from 1D and 2D to 3D

  • Review
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A periodically-poled LiNbO3 (PPLN) crystal features space-dependent second-order nonlinear coefficients, which is one of the most important materials to effectively control nonlinear optical interactions through quasi-phase matching (QPM). By using electric-field poling method, 1D and 2D PPLN crystals have been successfully fabricated for laser frequency conversion, quantum light sources, nonlinear beam shaping and nonlinear optical imaging. Recently, femtosecond laser engineering technique is utilized to prepare 3D domain structures inside LiNbO3 crystal, which provides a promising platform to control nonlinear interacting waves in 3D configuration. After 40 years of developments, PPLN crystals still have exciting prospects in fundamental researches and practical applications for integrated photonic chip, quantum information processing, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maiman T H, Hoskins R H, D’Haenens I J et al. Stimulated optical emission in fluorescent solids. II. Spectroscopy and stimulated emission in ruby. Phys Rev, 1961, 123: 1151–1157

    Google Scholar 

  2. Franken P A, Hill A E, Peters C W et al. Generation of optical harmonics. Phys Rev Lett, 1961, 7: 118–119

    Google Scholar 

  3. Kleinman D A. Theory of second harmonic generation of light. PhysRev, 1962, 128: 1761–1775

    Google Scholar 

  4. Armstrong J A, Bloembergen N, Ducuing J, et al. Interactions between light waves in a nonlinear dielectric. Phys Rev, 1962, 127: 1918–1939

    Google Scholar 

  5. Ming N B, Hong J F, Feng D. The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals. J Mater Sci, 1982, 17: 1663–1670

    Google Scholar 

  6. Feng D, Ming N, Hong J, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl Phys Lett, 1980, 37: 607–609

    Google Scholar 

  7. Yamada M, Nada N, Saitoh M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation. Appl Phys Lett, 1993, 62: 435–436

    Google Scholar 

  8. Lu Y, Lu Y, Xue C, et al. Growth of Nd3+-doped LiNbO3 optical superlattice crystals and its potential applications in self-frequency doubling. Appl Phys Lett, 1996, 68: 1467–1469

    Google Scholar 

  9. Zheng J, Lu Y, Luo G, et al. Visible dual-wavelength light generation in optical superlattice Er:LiNbO3 through upconversion and quasi-phase-matched frequency doubling. Appl Phys Lett, 1998, 72: 1808- 1810

    Google Scholar 

  10. Rosenman G, Urenski P, Agronin A, et al. Submicron ferroelectric domain structures tailored by high-voltage scanning probe microscopy. Appl Phys Lett, 2003, 82: 103–105

    Google Scholar 

  11. Hsu W, Gupta M C. Domain inversion in LiTaO3 by electron beam. Appl Phys Lett, 1992, 60: 1–3

    Google Scholar 

  12. Wei D, Wang C, Wang H, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat Photon, 2018, 12: 596–600

    Google Scholar 

  13. Xu T, Switkowski K, Chen X, et al. Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate. Nat Photon, 2018, 12: 591–595

    Google Scholar 

  14. Saltiel S M, Sheng Y, Voloch-Bloch N, et al. Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures. IEEE J Quantum Electron, 2009, 45: 1465–1472

    Google Scholar 

  15. Zhang Y, Gao Z D, Qi Z, et al. Nonlinear Čerenkov radiation in nonlinear photonic crystal waveguides. Phys Rev Lett, 2008, 100: 163904

    Google Scholar 

  16. Sheng Y, Saltiel S M, Krolikowski W, et al. Čerenkov-type second-harmonic generation with fundamental beams of different polarizations. Opt Lett, 2010, 35: 1317–1319

    Google Scholar 

  17. Wang W, Sheng Y, Kong Y, et al. Multiple Čerenkov second-harmonic waves in a two-dimensional nonlinear photonic structure. Opt Lett, 2010, 35: 3790–3792

    Google Scholar 

  18. Shutov I V, Ozheredov I A, Shumitski A V et al. Second harmonic generation by femtosecond laser pulses in the Laue scheme. Opt Spectrosc, 2008, 105: 79–84

    Google Scholar 

  19. Molina P, Ramírez M O, García B J et al. Directional dependence of the second harmonic response in two-dimensional nonlinear photonic crystals. Appl Phys Lett, 2010, 96: 261111

    Google Scholar 

  20. Zembrod A, Puell H, Giordmaine J A. Surface radiation from nonlinear optical polarisation. Opto-electronics, 1969, 1: 64–66

    Google Scholar 

  21. Kaminskii A A, Nishioka H, Ueda K, et al. Second-harmonic generation with Cherenkov-type phase matching in a bulk nonlinear LaBGeO5 crystal. Quantum Electron, 1996, 26: 381–382

    Google Scholar 

  22. Vaičaitis V. Cherenkov-type phase matching in bulk KDP crystal. Optics Commun, 2002, 209: 485–490

    Google Scholar 

  23. Sheng Y, Kong Q, Roppo V, et al. Theoretical study of Čerenkov-type second-harmonic generation in periodically poled ferroelectric crystals. J Opt Soc Am B, 2012, 29: 312–318

    Google Scholar 

  24. Zhang Y, Wang F, Geren K, et al. Second-harmonic imaging from a modulated domain structure. Opt Lett, 2010, 35: 178–180

    Google Scholar 

  25. Huang X, Wei D, Wang Y, et al. Second-harmonic interference imaging of ferroelectric domains through a scanning microscope. J Phys D-Appl Phys, 2017, 50: 485105

    Google Scholar 

  26. Sheng Y, Best A, Butt H J et al. Three-dimensional ferroelectric domain visualization by Čerenkov-type second harmonic generation. Opt Express, 2010, 18: 16539–16545

    Google Scholar 

  27. Zhang Y, Qi Z, Wang W, et al. Quasi-phase-matched Čerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide. Appl Phys Lett, 2006, 89: 171113

    Google Scholar 

  28. Chen C D, Zhang Y, Zhao G, et al. Experimental realization of Cerenkov up-conversions in a 2D nonlinear photonic crystal. J Phys D-Appl Phys, 2012, 45: 405101

    Google Scholar 

  29. Chen C, Lu J, Liu Y, et al. Cerenkov third-harmonic generation via cascaded χ(2) processes in a periodic-poled LiTaO3 waveguide. Opt Lett, 2011, 36: 1227–1229

    Google Scholar 

  30. Zhang Y, Hu X P, Zhao G, et al. Cerenkov second-harmonic arc from a hexagonally poled LiTaO3 planar waveguide. J Phys D-Appl Phys, 2009, 42: 215103

    Google Scholar 

  31. Saltiel S M, Neshev D N, Krolikowski W, et al. Multiorder nonlinear diffraction in frequency doubling processes. Opt Lett, 2009, 34: 848- 850

    Google Scholar 

  32. Saltiel S M, Neshev D N, Fischer R, et al. Generation of second-harmonic conical waves via nonlinear bragg diffraction. Phys Rev Lett, 2008, 100: 103902

    Google Scholar 

  33. Freund I. Nonlinear diffraction. Phys Rev Lett, 1968, 21: 1404–1406

    Google Scholar 

  34. Zhu Y Y, Hong J F, Ming N B. Growth of ferroelectric crystals from melt. Ferroelectrics, 1993, 142: 31–44

    Google Scholar 

  35. Chen J, Zhou Q, Hong J F et al. Influence of growth striations on para-ferroelectric phase transitions: Mechanism of the formation of periodic laminar domains in LiNbO3 and LiTaO3. J Appl Phys, 1989, 66: 336–341

    Google Scholar 

  36. Wenshan W, Qun Z, Zhaohua G, et al. Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains. J Cryst Growth, 1986, 79: 706–709

    Google Scholar 

  37. Xu H, Jiang G, Mao L, et al. High-frequency resonance in acoustic superlattice of barium sodium niobate crystals. J Appl Phys, 1992, 71: 2480–2482

    Google Scholar 

  38. Wenshan W, Ming Q I. Research on TGS single crystal growth with modulated structure. J Cryst Growth, 1986, 79: 758–761

    Google Scholar 

  39. Fejer M M, Magel G A, Jundt D H et al. Quasi-phase-matched second harmonic generation: Tuning and tolerances. IEEE J Quantum Electron, 1992, 28: 2631–2654

    Google Scholar 

  40. Foulon G, Ferriol M, Brenier A, et al. Laser heated pedestal growth and optical properties of Yb3+-doped LiNbO3 single crystal fibers. Chem Phys Lett, 1995, 245: 555–560

    Google Scholar 

  41. Miyazawa S. Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide. J Appl Phys, 1979, 50: 4599–4603

    Google Scholar 

  42. Zhu Y, Zhu S, Hong J, et al. Domain inversion in LiNbO3 by proton exchange and quick heat treatment. Appl Phys Lett, 1994, 65: 558- 560

    Google Scholar 

  43. Lim E J, Fejer M M, Byer R L. Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide. Electron Lett, 1989, 25: 174–175

    Google Scholar 

  44. Lim E J, Fejer M M, Byer R L et al. Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide. Electron Lett, 1989, 25: 731–732

    Google Scholar 

  45. Webjorn J, Laurell F, Arvidsson G. Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide. IEEE Photon Technol Lett, 1989, 1: 316–318

    Google Scholar 

  46. Webjorn J, Laurell F, Arvidsson G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic generation. J Lightwave Technol, 1989, 7: 1597–1600

    Google Scholar 

  47. Niu Y, Lin C, Liu X, et al. Optimizing the efficiency of a periodically poled LNOI waveguide using in situ monitoring of the ferroelectric domains. Appl Phys Lett, 2020, 116: 101104

    Google Scholar 

  48. Zhu S, Zhu Y, Zhang Z, et al. LiTaO3 crystal periodically poled by applying an external pulsed field. J Appl Phys, 1995, 77: 5481–5483

    Google Scholar 

  49. Risk W P, Lau S D. Periodic electric field poling of KTiOPO4 using chemical patterning. Appl Phys Lett, 1996, 69: 3999–4001

    Google Scholar 

  50. Canalias C, Pasiskevicius V. Mirrorless optical parametric oscillator. Nat Photon, 2007, 1: 459–462

    Google Scholar 

  51. Myers L E, Eckardt R C, Fejer M M et al. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. JOpt Soc Am B, 1995, 12: 2102–2116

    Google Scholar 

  52. Batchko R G, Shur V Y, Fejer M M et al. Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation. Appl Phys Lett, 1999, 75: 1673–1675

    Google Scholar 

  53. Busacca A C, Sones C L, Apostolopoulos V, et al. Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling. Appl Phys Lett, 2002, 81: 4946–4948

    Google Scholar 

  54. Busacca A C, Sones C L, Eason R W et al. First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides. Appl Phys Lett, 2004, 84: 4430–4432

    Google Scholar 

  55. Kuroda A, Kurimura S, Uesu Y. Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields. Appl Phys Lett, 1996, 69: 1565–1567

    Google Scholar 

  56. Ishizuki H, Taira T. High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5 mm×5 mm aperture. Opt Lett, 2005, 30: 2918–2920

    Google Scholar 

  57. Ishizuki H, Taira T. Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3. Opt Express, 2012, 20: 20002–20010

    Google Scholar 

  58. Sheng Y, Wang T, Ma B, et al. Anisotropy of domain broadening in periodically poled lithium niobate crystals. Appl Phys Lett, 2006, 88: 041121

    Google Scholar 

  59. Rosenman G, Garb K, Skliar A, et al. Domain broadening in quasi-phase-matched nonlinear optical devices. Appl Phys Lett, 1998, 73: 865–867

    Google Scholar 

  60. Mizuuchi K, Yamamoto K. Second-harmonic generation in domain-inverted grating induced by focused ion beam. OPT REV, 1994, 1: 100–102

    Google Scholar 

  61. Boes A, Steigerwald H, Crasto T, et al. Tailor-made domain structures on the x- and y-face of lithium niobate crystals. Appl Phys B, 2014, 115: 577–581

    Google Scholar 

  62. Steigerwald H, Ying Y J, Eason R W et al. Direct writing of ferroelectric domains on the x- and y-faces of lithium niobate using a continuous wave ultraviolet laser. Appl Phys Lett, 2011, 98: 062902

    Google Scholar 

  63. Boes A, Crasto T, Steigerwald H, et al. Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light. Appl Phys Lett, 2013, 103: 142904

    Google Scholar 

  64. Muir A C, Sones C L, Mailis S, et al. Direct-writing of inverted domains in lithium niobate using a continuous wave ultra violet laser. Opt Express, 2008, 16: 2336–2350

    Google Scholar 

  65. Ying, C Y J, Muir A C, Valdivia C E et al. Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals. Laser Photon Rev, 2012, 6: 526–548

    Google Scholar 

  66. Thomas J, Hilbert V, Geiss R, et al. Quasi phase matching in femtosecond pulse volume structured x-cut lithium niobate. Laser Photonics Rev, 2013, 7: L17–L20

    Google Scholar 

  67. Thompson R, Tu M, Aveline D, et al. High power single frequency 780 nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals. Opt Express, 2003, 11: 1709–1713

    Google Scholar 

  68. Chiow S, Kovachy T, Hogan J M et al. Generation of 43 W of quasi-continuous 780 nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals. Opt Lett, 2012, 37: 3861–3863

    Google Scholar 

  69. Hart D L, Goldberg L, Burns W K. Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3. Electron Lett, 1999, 35: 52–53

    Google Scholar 

  70. Boullet J, Lavoute L, Desfarges, Berthelemot A, et al. Tunable red-light source by frequency mixing from dual band Er/Yb co-doped fiber laser. Opt Express, 2006, 14: 3936–3941

    Google Scholar 

  71. Bosenberg W R, Alexander J I, Myers L E et al. 2.5 W, continuous wave, 629 nm solid-state laser source. In: Proceedings of the Advanced Solid State Lasers. Coeur d’Alene: Optical Society of America, 1998. 19: VL9

    Google Scholar 

  72. Miller G D, Batchko R G, Tulloch W M et al. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate. Opt Lett, 1997, 22: 1834–1836

    Google Scholar 

  73. Ricciardi I, De, Rosa M, Rocco A, et al. Cavity-enhanced generation of 6 W cw second-harmonic power at 532 nm in periodically-poled MgO:LiTaO3. Opt Express, 2010, 18: 10985–10994

    Google Scholar 

  74. Pruneri V, Koch R, Kazansky P G et al. 49 mW of cw blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946-nm Nd:YAG laser. Opt Lett, 1995, 20: 2375

    Google Scholar 

  75. Batchko R G, Fejer M M, Byer R L et al. Continuous-wave quasi-phase-matched generation of 60 mW at 465 nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium nio-bate. Opt Lett, 1999, 24: 1293–1295

    Google Scholar 

  76. Xu P, Li K, Zhao G, et al. Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure. Opt Lett, 2004, 29: 95- 97

    Google Scholar 

  77. Vance J D, She C Y, Moosmüller H. Continuous-wave, all-solid-state, single-frequency 400-mW source at 589 nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator. Appl Opt, 1998, 37: 4891–4896

    Google Scholar 

  78. Yue J, She C Y, Williams B P et al. Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate. Opt Lett, 2009, 34: 1093–1095

    Google Scholar 

  79. Tracy A J, Lopez C, Hankla A, et al. Generation of high-average-power visible light in periodically poled nearly stoichiometric lithium tantalate. Appl Opt, 2009, 48: 964–968

    Google Scholar 

  80. Mimoun E, De Sarlo L, Zondy J J et al. Sum-frequency generation of 589 nm light with near-unit efficiency. Opt Express, 2008, 16: 18684–18691

    Google Scholar 

  81. Georgiev D, Gapontsev V P, Dronov A G et al. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm. Opt Express, 2005, 13: 6772–6776

    Google Scholar 

  82. White R T, McKinnie I T, Butterworth S D et al. Tunable single-frequency ultraviolet generation from a continuous-wave Ti: Sapphire laser with an intracavity PPLN frequency doubler. Appl Phys B, 2003, 77: 547–550

    Google Scholar 

  83. Mizuuchi K, Sugita T, Yamamoto K, et al. Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3. Opt Lett, 2003, 28: 1344–1346

    Google Scholar 

  84. Meyn J P, Fejer M M. Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate. Opt Lett, 1997, 22: 1214–1216

    Google Scholar 

  85. Mizuuchi K, Yamamoto K. Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3. Opt Lett, 1996, 21: 107–109

    Google Scholar 

  86. Champert P A, Popov S V, Taylor J R et al. Efficient second-harmonic generation at 384 nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source. Opt Lett, 2000, 25: 1252- 1254

    Google Scholar 

  87. Liu Z W, Zhu S N, Zhu Y Y et al. Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling. Jpn J Appl Phys, 2001, 40: 6841–6844

    Google Scholar 

  88. Wang S, Pasiskevicius V, Hellstrã M J, et al. First-order type II quasi-phase-matched UV generation in periodically poled KTP. Opt Lett, 1999, 24: 978–980

    Google Scholar 

  89. Wang S, Pasiskevicius V, Laurell F, et al. Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4. Opt Lett, 1998, 23: 1883–1885

    Google Scholar 

  90. Zhang B, Ding Y J, Zotova I B. Efficient ultrafast ultraviolet generation based on frequency doubling in short-period periodically-poled KTiOPO4 crystal. Appl Phys B, 2010, 99: 629–632

    Google Scholar 

  91. Yamamoto K, Yamamoto H, Taniuchi T. Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide. Appl Phys Lett, 1991, 58: 1227- 1229

    Google Scholar 

  92. Cantelar E, Torchia G A, Sanz-Garcıa J A et al. Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3: Er3+/Yb3+ nonlinear channel waveguides. Appl Phys Lett, 2003, 83: 2991–2993

    Google Scholar 

  93. Capmany J. Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate. Appl Phys Lett, 2001, 78: 144–146

    Google Scholar 

  94. Feng J, Zhu Y, Ming N. Harmonic generations in an optical Fibonacci superlattice. Phys Rev B, 1990, 41: 5578–5582

    Google Scholar 

  95. Zhu S. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science, 1997, 278: 843–846

    Google Scholar 

  96. Hu X P, Zhao G, Yan Z, et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice. Opt Lett, 2008, 33: 408–410

    Google Scholar 

  97. Liu Z W, Zhu S N, Zhu Y Y et al. A scheme to realize three-fundamental-colors laser based on quasi-phase matching. Solid State Commun, 2001, 119: 363–366

    Google Scholar 

  98. Xu P, Xie Z D, Leng H Y et al. Frequency self-doubling optical parametric amplification: Noncollinear red-green-blue light-source generation based on a hexagonally poled lithium tantalate. Opt Lett, 2008, 33: 2791–2793

    Google Scholar 

  99. Zhao L, Qi Z, Yuan Y, et al. Integrated noncollinear red-green-blue laser light source using a two-dimensional nonlinear photonic qua-sicrystal. J Opt Soc Am B, 2011, 28: 608–612

    Google Scholar 

  100. Chang W K, Chen Y H, Chang H H et al. Two-dimensional PPLN for simultaneous laser Q-switching and optical parametric oscillation in a Nd:YVO4 laser. Opt Express, 2011, 19: 23643–23651

    Google Scholar 

  101. Xu P, Zhu S N. Review article: Quasi-phase-matching engineering of entangled photons. AIP Adv, 2012, 2: 041401

    Google Scholar 

  102. Ou Z Y, Mandel L. Violation of Bell’s inequality and classical probability in a two-photon correlation experiment. Phys Rev Lett, 1988, 61: 50–53

    MathSciNet  Google Scholar 

  103. Shih Y H, Alley C O. New type of einstein-podolsky-rosen-bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys Rev Lett, 1988, 61: 2921–2924

    Google Scholar 

  104. Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575–579

    MATH  Google Scholar 

  105. Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement. Phys Rev A, 1995, 52: R3429–R3432

    Google Scholar 

  106. Strekalov D V, Sergienko A V, Klyshko D N et al. Observation of two-photon “ghost” interference and diffraction. Phys Rev Lett, 1995, 74: 3600–3603

    Google Scholar 

  107. Afek I, Ambar O, Silberberg Y. High-NOON states by mixing quantum and classical light. Science, 2010, 328: 879–881

    MathSciNet  MATH  Google Scholar 

  108. Franson J D. Two-photon interferometry over large distances. Phys Rev A, 1991, 44: 4552–4555

    Google Scholar 

  109. Kwiat P G, Mattle K, Weinfurter H, et al. New high-intensity source of polarization-entangled photon pairs. Phys Rev Lett, 1995, 75: 4337–4341

    Google Scholar 

  110. Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons. Nature, 2001, 412: 313–316

    Google Scholar 

  111. Grimau Puigibert M, Aguilar G H, Zhou Q, et al. Heralded single photons based on spectral multiplexing and feed-forward control. Phys Rev Lett, 2017, 119: 083601

    Google Scholar 

  112. Shalm L K, Hamel D R, Yan Z, et al. Three-photon energy-time entanglement. Nat Phys, 2012, 9: 19–22

    Google Scholar 

  113. Kuklewicz C E, Fiorentino M, Messin G, et al. High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter. Phys Rev A, 2004, 69: 013807

    Google Scholar 

  114. Bao X H, Qian Y, Yang J, et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys Rev Lett, 2008, 101: 190501

    Google Scholar 

  115. Scholz M, Koch L, Benson O. Statistics of narrow-band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys Rev Lett, 2009, 102: 063603

    Google Scholar 

  116. Xu C, Zhang L, Huang S, et al. Sensing and tracking enhanced by quantum squeezing. Photon Res, 2019, 7: A14

    Google Scholar 

  117. Vahlbruch H, Mehmet M, Danzmann K, et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys Rev Lett, 2016, 117: 110801

    Google Scholar 

  118. Liu F, Zhou Y, Yu J, et al. Squeezing-enhanced fiber Mach-Zehnder interferometer for low-frequency phase measurement. Appl Phys Lett, 2017, 110: 021106

    Google Scholar 

  119. Kaiser F, Fedrici B, Zavatta A, et al. A fully guided-wave squeezing experiment for fiber quantum networks. Optica, 2016, 3: 362–365

    Google Scholar 

  120. Sua Y M, Chen J Y, Huang Y P. Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide. Opt Lett, 2018, 43: 2965–2968

    Google Scholar 

  121. Takesue H, Dyer S D, Stevens M J et al. Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors. Optica, 2015, 2: 832–835

    Google Scholar 

  122. Zhong T, Zhou H, Horansky R D et al. Photon-efficient quantum key distribution using time-energy entanglement with high-dimensional encoding. New J Phys, 2015, 17: 022002

    Google Scholar 

  123. Zhang H, Jin X M, Yang J, et al. Preparation and storage of fre-quency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat Photon, 2011, 5: 628–632

    Google Scholar 

  124. Gong Y X, Xie Z D, Xu P, et al. Compact source of narrow-band counterpropagating polarization-entangled photon pairs using a single dual-periodically-poled crystal. Phys Rev A, 2011, 84: 053825

    Google Scholar 

  125. Ueno W, Kaneda F, Suzuki H, et al. Entangled photon generation in two-period quasi-phase-matched parametric down-conversion. Opt Express, 2012, 20: 5508–5517

    Google Scholar 

  126. Zhang Q Y, Xue G T, Xu P, et al. Manipulation of tripartite frequency correlation under extended phase matchings. Phys Rev A, 2018, 97: 022327

    Google Scholar 

  127. Bai Y F, Xu P, Xie Z D et al. Mode-locked biphoton generation by concurrent quasi-phase-matching. Phys Rev A, 2012, 85: 053807

    Google Scholar 

  128. Nasr M B, Carrasco S, Saleh, B E A et al. Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion. Phys Rev Lett, 2008, 100: 183601

    Google Scholar 

  129. Valencia A, Scarcelli G, Shih Y. Distant clock synchronization using entangled photon pairs. Appl Phys Lett, 2004, 85: 2655–2657

    Google Scholar 

  130. Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced measurements: Beating the standard quantum limit. Science, 2004, 306: 1330–1336

    Google Scholar 

  131. Nasr M B, Saleh, B E A, Sergienko A V et al. Demonstration of dispersion-canceled quantum-optical coherence tomography. Phys Rev Lett, 2003, 91: 083601

    Google Scholar 

  132. Jin H, Liu F M, Xu P, et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys Rev Lett, 2014, 113: 103601

    Google Scholar 

  133. Solntsev A S, Setzpfandt F, Clark A S et al. Generation of non-classical biphoton states through cascaded quantum walks on a nonlinear chip. Phys Rev X, 2014, 4: 031007

    Google Scholar 

  134. Krapick S, Brecht B, Herrmann H, et al. On-chip generation of photon-triplet states. Opt Express, 2016, 24: 2836–2849

    Google Scholar 

  135. Atzeni S, Rab A S, Corrielli G, et al. Integrated sources of entangled photons at the telecom wavelength in femtosecond-laser-written circuits. Optica, 2018, 5: 311–314

    Google Scholar 

  136. Shapira A, Naor L, Arie A. Nonlinear optical holograms for spatial and spectral shaping of light waves. Sci Bull, 2015, 60: 1403–1415

    Google Scholar 

  137. Arie A, Voloch N. Periodic, quasi-periodic, and random quadratic nonlinear photonic crystals. Laser Photon Rev, 2010, 4: 355–373

    Google Scholar 

  138. Hu X, Zhang Y, Zhu S. Nonlinear beam shaping in domain engineered ferroelectric crystals. Adv Mater, 2019, 1903775

    Google Scholar 

  139. Xu P, Ji S H, Zhu S N et al. Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal. Phys Rev Lett, 2004, 93: 133904

    Google Scholar 

  140. Fang X, Wei D, Wang Y, et al. Conical third-harmonic generation in a hexagonally poled LiTaO3 crystal. Appl Phys Lett, 2017, 110: 111105

    Google Scholar 

  141. Allen L, Beijersbergen M W, Spreeuw, R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A, 1992, 45: 8185–8189

    Google Scholar 

  142. Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner. Opt Lett, 1997, 22: 52–54

    Google Scholar 

  143. He H, Friese, M E J, Heckenberg N R et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett, 1995, 75: 826–829

    Google Scholar 

  144. Padgett M, Bowman R. Tweezers with a twist. Nat Photon, 2011, 5: 343–348

    Google Scholar 

  145. Grier D G. A revolution in optical manipulation. Nature, 2003, 424: 810–816

    Google Scholar 

  146. Gibson G, Courtial J, Padgett M J et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt Express, 2004, 12: 5448–5456

    Google Scholar 

  147. Wang A, Zhu L, Chen S, et al. Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber. Opt Express, 2016, 24: 11716–11726

    Google Scholar 

  148. Xiao S, Zhang L, Wei D, et al. Orbital angular momentum-enhanced measurement of rotation vibration using a Sagnac interferometer. Opt Express, 2018, 26: 1997–2005

    Google Scholar 

  149. Vaziri A, Pan J W, Jennewein T, et al. Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum. Phys Rev Lett, 2003, 91: 227902

    Google Scholar 

  150. Shapira A, Shiloh R, Juwiler I, et al. Two-dimensional nonlinear beam shaping. Opt Lett, 2012, 37: 2136–2138

    Google Scholar 

  151. Lee W H. Binary computer-generated holograms. Appl Opt, 1979, 18: 3661–3669

    Google Scholar 

  152. Bloch N V, Shemer K, Shapira A, et al. Twisting light by nonlinear photonic crystals. Phys Rev Lett, 2012, 108: 233902

    Google Scholar 

  153. Shemer K, Voloch-Bloch N, Shapira A, et al. Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals. Opt Lett, 2013, 38: 5470–5473

    Google Scholar 

  154. Berry M V, Balazs N L. Nonspreading wave packets. Am J Phys, 1979, 47: 264–267

    Google Scholar 

  155. Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams. Phys Rev Lett, 2007, 99: 213901

    Google Scholar 

  156. Ellenbogen T, Voloch-Bloch N, Ganany-Padowicz A, et al. Nonlinear generation and manipulation of Airy beams. Nat Photon, 2009, 3: 395–398

    Google Scholar 

  157. Torres J P, Alexandrescu A, Carrasco S, et al. Quasi-phase-matching engineering for spatial control of entangled two-photon states. Opt Lett, 2004, 29: 376–378

    Google Scholar 

  158. Pittman T B, Strekalov D V, Klyshko D N et al. Two-photon geometric optics. Phys Rev A, 1996, 53: 2804–2815

    Google Scholar 

  159. Boto A N, Kok P, Abrams D S et al. Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit. Phys Rev Lett, 2000, 85: 2733–2736

    Google Scholar 

  160. Yu X Q, Xu P, Xie Z D et al. Transforming spatial entanglement using a domain-engineering technique. Phys Rev Lett, 2008, 101: 233601

    Google Scholar 

  161. Leng H Y, Yu X Q, Gong Y X et al. On-chip steering of entangled photons in nonlinear photonic crystals. Nat Commun, 2011, 2: 429

    Google Scholar 

  162. Jin H, Xu P, Zhao J S et al. Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal. Appl Phys Lett, 2012, 101: 211115

    Google Scholar 

  163. Barbieri M, De Martini F, Mataloni P, et al. Enhancing the violation of the einstein-podolsky-rosen local realism by quantum hyper-entanglement. Phys Rev Lett, 2006, 97: 140407

    Google Scholar 

  164. Barreiro J T, Langford N K, Peters N A et al. Generation of hy-perentangled photon pairs. Phys Rev Lett, 2005, 95: 260501

    Google Scholar 

  165. Chen K, Li C M, Zhang Q, et al. Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. Phys Rev Lett, 2007, 99: 120503

    Google Scholar 

  166. Rossi A, Vallone G, Chiuri A, et al. Multipath entanglement of two photons. Phys Rev Lett, 2009, 102: 153902

    Google Scholar 

  167. Megidish E, Halevy A, Eisenberg H S et al. Compact 2D nonlinear photonic crystal source of beamlike path entangled photons. Opt Express, 2013, 21: 6689–6696

    Google Scholar 

  168. Jin H, Xu P, Luo X W et al. Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal. Phys Rev Lett, 2013, 111: 023603

    Google Scholar 

  169. Liu H Y, Zhang R, Xu P, et al. Compact generation of a two-photon multipath Dicke state from a single χ(2) nonlinear photonic crystal. Opt Lett, 2019, 44: 239–242

    Google Scholar 

  170. Gong Y X, Xu P, Shi J, et al. Generation of polarization-entangled photon pairs via concurrent spontaneous parametric down-conversions in a single χ(2) nonlinear photonic crystal. Opt Lett, 2012, 37: 4374–4376

    Google Scholar 

  171. Lu L L, Xu P, Zhong M L et al. Orbital angular momentum entanglement via fork-poling nonlinear photonic crystals. Opt Express, 2015, 23: 1203–1212

    Google Scholar 

  172. Ming Y, Tang J, Chen Z X et al. Generation of N00N state with orbital angular momentum in a twisted nonlinear photonic crystal. IEEE J Sel Top Quantum Electron, 2015, 21: 225–230

    Google Scholar 

  173. He G, Zhu C, Jiang Y, et al. Generation of path-polarization hy-perentanglement using quasi-phase-matching in quasi-periodic nonlinear photonic crystal. Sci Rep, 2017, 7: 4954

    Google Scholar 

  174. Ihlefeld J F, Michael J R, McKenzie B B et al. Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy. J Mater Sci, 2016, 52: 1071–1081

    Google Scholar 

  175. Kläui M, Ehrke H, Rüdiger U, et al. Direct observation of domain-wall pinning at nanoscale constrictions. Appl Phys Lett, 2005, 87: 102509

    Google Scholar 

  176. Gonnissen J, Batuk D, Nataf G F et al. Direct observation of ferroelectric domain walls in LiNbO3: Wall-meanders, kinks, and local electric charges. Adv Funct Mater, 2016, 26: 7599–7604

    Google Scholar 

  177. Sawada A, Abe R. The formation mechanism of domain etch patterns in triglycine sulfate crystals. Jpn J Appl Phys, 1967, 6: 699–707

    Google Scholar 

  178. Talbot H F. LXXVI. Facts relating to optical science. No. IV. London Edinburgh Dublin Philos Mag J Sci, 1836, 9: 401–407

    Google Scholar 

  179. Zhang Y, Wen J, Zhu S N et al. Nonlinear Talbot effect. Phys Rev Lett, 2010, 104: 183901

    Google Scholar 

  180. Wei D, Wang C, Xu X, et al. Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals. Nat Commun, 2019, 10: 4193

    Google Scholar 

  181. Liu S, Switkowski K, Xu C, et al. Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals. Nat Commun, 2019, 10: 3208

    Google Scholar 

  182. Lu R E, Zhao R Z, Feng X, et al. Nearly diffraction-free nonlinear imaging of irregularly distributed ferroelectric domains. Phys Rev Lett, 2018, 120: 067601

    Google Scholar 

  183. Ducournau G. Silicon photonics targets terahertz region. Nat Photon, 2018, 12: 574–575

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhang, Gang Zhao or ShiNing Zhu.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303703 and 2016YFA0302500), the National Natural Science Foundation of China (Grant Nos. 91950206, 11874213 and 11674171), and the Fundamental Research Funds for the Central Universities (Grant Nos. 14380105 and 1480605201).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Chen, P., Xu, C. et al. Periodically poled LiNbO3 crystals from 1D and 2D to 3D. Sci. China Technol. Sci. 63, 1110–1126 (2020). https://doi.org/10.1007/s11431-019-1503-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1503-0

Keywords

Navigation