Skip to main content
Log in

Adaptive sliding mode output tracking control based-FODOB for a class of uncertain fractional-order nonlinear time-delayed systems

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

An adaptive sliding mode control (ASMC) method, based on fractional-order disturbance-observer (FODOB), is presented for a class of fractional-order nonlinear time-delay systems (FONTDS) with uncertainties to solve the target output tracking problem. The external disturbances are estimated by FODOB, and the unknown internal perturbations of the system are adaptively estimated by sliding mode control (SMC). Furthermore, Gronwall’s inequality approach is used to ensure that the output tracking error is uniformly bounded for FONTDS. Firstly, a fractional-order sliding mode control (FOSMC) based FODOB is proposed for a fractional-order linear time-delay system (FOLTDS). Secondly, combined with adaptive estimation, the ASMC of FONTDS is studied. Finally, a numerical example of FONTDS is used to verify the effectiveness of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petráš I. Modeling and numerical analysis of fractional-order Bloch equations. Comput Math Appl, 2011, 61: 341–356

    Article  MathSciNet  Google Scholar 

  2. Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Commun Nonlinear Sci Numer Simul, 2014, 19: 2951–2957

    Article  MathSciNet  ADS  Google Scholar 

  3. Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006

    Google Scholar 

  4. Sabatier J, Agrawal O P, Tenreiro M J A. Advances in Fractional Calculus. Amsterdam: Springer, 2007

    Book  Google Scholar 

  5. Wang Z, Xie Y, Lu J, et al. Stability and bifurcation of a delayed gener-alized fractional-order prey-predator model with interspecific competition. Appl Math Comput, 2019, 347: 360–369

    MathSciNet  Google Scholar 

  6. Michail K. Optimised configuration of sensing elements for control and fault tolerance applied to an electro-magnetic suspension system. Dissertation for Doctoral Degree. Loughborough: University of Loughborough, 2009

    Google Scholar 

  7. Wang J, Shao C, Chen Y Q. Fractional order sliding mode control via disturbance observer for a class of fractional order systems with mismatched disturbance. Mechatronics, 2018, 53: 8–19

    Article  Google Scholar 

  8. Podlubny I. Fractional Differential Equations. New York: Academic Press, 1999

    Google Scholar 

  9. Sabatier J, Farges C, Trigeassou J C. Fractional systems state space description: Some wrong ideas and proposed solutions. J Vib Control, 2014, 20: 1076–1084

    Article  MathSciNet  Google Scholar 

  10. Dong S L, Fang M, Shi P, et al. Dissipativity-based control for fuzzy systems with asynchronous modes and intermittent measurements. IEEE Trans Cybern, 2019,: 1–11, doi: 10.1109/TCYB.2018.2887060

    Google Scholar 

  11. Dai M C, Huang Z G, Xia J W, et al. Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems. Appl Math Comput, 2019, 362: 124571

    MathSciNet  Google Scholar 

  12. Hu X H, Xia J W, Wei Y L, et al. Passivity-based state synchronization for semi-Markov jump coupled chaotic neural networks with randomly occurring time delays. Appl Math Comput, 2019, 361: 32–41

    MathSciNet  Google Scholar 

  13. Huang X, Fan Y J, Jia J, et al. Quasi-synchronisation of fractional-order memristor-based neural networks with parameter mismatches. IET Control Theor A, 2017, 8: 2317–2327

    Article  MathSciNet  Google Scholar 

  14. Li X M, Zhang B, Li P, et al. Finite-horizon H state estimation for periodic neural networks over fading channels. IEEE Trans Neural Netw Learning Syst, 2019, 1–11, doi: 10.1109/TNNLS.2019.2920368

    Google Scholar 

  15. Wang X H, Wang Z, Song Q K, et al. A waiting-time-based eventtriggered scheme for stabilization of complex-valued neural networks. Neural Networks, 2020, 121: 329–338

    Article  PubMed  Google Scholar 

  16. Jia J, Huang X, Li Y, et al. Global stabilization of fractional-order memristor-based neural networks with time delay. IEEE Trans Neural Netw Learning Syst, 2019, 1–13, doi: 10.1109/TNNLS.2019.2915353

    Google Scholar 

  17. Li X M, Zhou Q, Li P, et al. Event-triggered consensus control for multi-agent systems against false data-injection attacks. IEEE Trans Cybern, 2019,: 1–11, doi: 10.1109/TCYB.2019.2937951

    Google Scholar 

  18. Cao L, Li H Y, Dong G W, et al. Event-triggered control for multiagent systems with sensor faults and input saturation. IEEE Trans Syst Man Cybern Syst, 2019, 1–12, doi: 10.1109/TSMC.2019.2938216

    Google Scholar 

  19. Dong S L, Chen C L P, Fang M, et al. Dissipativity-based asynchronous fuzzy sliding mode control for T-S fuzzy hidden Markov jump systems. IEEE Trans Cybern, 2019, 1–11

    Google Scholar 

  20. Meng B, Wang X, Wang Z. Synthesis of sliding mode control for a class of uncertain singular fractional-order systems-based restricted equivalent. IEEE Access, 2019, 7: 96191–96197

    Article  Google Scholar 

  21. Meng B, Wang X H, Zhang Z Y, et al. Necessary and sufficient conditions for normalization and sliding mode control of singular fractional-order systems with uncertainties. Sci China Inf Sci, 2019, doi: 10.1007/s11432-019-1521-5

    Google Scholar 

  22. Utkin V I. Sliding Modes in Control and Optimization. Berlin: Springer, 1992

    Book  Google Scholar 

  23. Shao S Y, Chen M, Yan X H. Adaptive sliding mode synchronization for a class of fractional-order chaotic systems with disturbance. Nonlinear Dyn, 2016, 83: 1855–1866

    Article  MathSciNet  Google Scholar 

  24. Guo J H, Luo Y G, Li K Q. Adaptive fuzzy sliding mode control for coordinated longitudinal and lateral motions of multiple autonomous vehicles in a platoon. Sci China Tech Sci, 2017, 60: 576–586

    Article  ADS  Google Scholar 

  25. Ciccarella G, Dalla Mora M, Germani A. A Luenberger-like observer for nonlinear systems. Int J Control, 1993, 57: 537–556

    Article  MathSciNet  Google Scholar 

  26. Su J Y, Chen W H. Further results on “Reduced order disturbance observer for discrete-time linear systems”. Automatica, 2018, 93: 550–553

    Article  MathSciNet  Google Scholar 

  27. Yang H J, Liu J K, He W. Distributed disturbance-observer-based vibration control for a flexible-link manipulator with output constraints. Sci China Tech Sci, 2018, 61: 1528–1536

    Article  Google Scholar 

  28. Vahidi-Moghaddam A, Rajaei A, Ayati M. Disturbance-observer-based fuzzy terminal sliding mode control for MIMO uncertain nonlinear systems. Appl Math Model, 2019, 70: 109–127

    Article  MathSciNet  Google Scholar 

  29. Wei X J, Wu Z J, Karimi H R. Disturbance observer-based disturbance attenuation control for a class of stochastic systems. Automatica, 2016, 63: 21–25

    Article  MathSciNet  Google Scholar 

  30. Zhang J H, Shi P, Lin W G. Extended sliding mode observer based control for Markovian jump linear systems with disturbances. Automatica, 2016, 70: 140–147

    Article  MathSciNet  Google Scholar 

  31. Chen M, Chen W H. Sliding mode control for a class of uncertain nonlinear system based on disturbance observer. Int J Adapt Control Signal Process, 2010, 24: 51–64

    Article  MathSciNet  Google Scholar 

  32. Zhang J H, Liu X W, Xia Y Q, et al. Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances. IEEE Trans Ind Electron, 2016, 63: 7040–7048

    Article  Google Scholar 

  33. Pashaei S, Badamchizadeh M. A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances. ISA Trans, 2016, 63: 39–48

    Article  PubMed  Google Scholar 

  34. Lu M B, Liu L, Feng G. Adaptive tracking control of uncertain Euler-Lagrange systems subject to external disturbances. Automatica, 2019, 104: 207–219

    Article  MathSciNet  Google Scholar 

  35. Sun G H, Wu L G, Kuang Z A, et al. Practical tracking control of linear motor via fractional-order sliding mode. Automatica, 2018, 94: 221–235

    Article  MathSciNet  Google Scholar 

  36. Li H, Zhao S, He W, et al. Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone. Automatica, 2019, 100: 99–107

    Article  MathSciNet  Google Scholar 

  37. Gong P, Lan W. Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica, 2018, 92: 92–99

    Article  MathSciNet  Google Scholar 

  38. Min H F, Xu S Y, Zhang B Y, et al. Output-feedback control for stochastic nonlinear systems subject to input saturation and timevarying delay. IEEE Trans Automat Contr, 2019, 64: 359–364

    Article  Google Scholar 

  39. Wu Z G, Xu Y, Pan Y J, et al. Event-triggered pinning control for consensus of multiagent systems with quantized information. IEEE Trans Syst Man Cybern Syst, 2018, 48: 1929–1938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Meng.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61573008 and 61973199) and the Post-Doctoral Applied Research Projects of Qingdao (Grant No. 2015122).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, X., Xia, J. et al. Adaptive sliding mode output tracking control based-FODOB for a class of uncertain fractional-order nonlinear time-delayed systems. Sci. China Technol. Sci. 63, 1854–1862 (2020). https://doi.org/10.1007/s11431-019-1476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1476-4

Keywords

Navigation