Skip to main content
Log in

Proton-induced current transient in SiGe HBT and charge collection model based on Monte Carlo simulation

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The study presents an investigation into the proton-induced current transient in a silicon-germanium heterojunction bipolar transistor (SiGe HBT). The temporal information of the proton-induced current transients is first measured and then compared with results from heavy ion microbeam experiment. Additionally, a model for proton-induced charge collection based on Geant4 Monte Carlo simulation tools is constructed by using the information from heavy ion experiment and 3D TCAD simulation. The results obtained by the validated model exhibit good consistency with the proton experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cressler J D. SiGe HBT technology: A new contender for Si-based RF and microwave circuit applications. IEEE Trans Microwave Theor Techn, 1998, 46: 572–589

    Article  Google Scholar 

  2. Sutton A K, Haugerud B M, Yuan Lu B M, et al. Proton tolerance of fourth-generation 350 GHz UHV/CVD SiGe HBTs. IEEE Trans Nucl Sci, 2004, 51: 3736–3742

    Article  Google Scholar 

  3. Cressler J D. Radiation effects in SiGe technology. IEEE Trans Nucl Sci, 2013, 60: 1992–2014

    Article  Google Scholar 

  4. Cressler J D, Hamilton M C, Mullinax G S, et al. The effects of proton irradiation on the lateral and vertical scaling of UHV/CVD SiGe HBT BiCMOS technology. IEEE Trans Nucl Sci, 2000, 47: 2515–2520

    Article  Google Scholar 

  5. Cressler J D. On the Potential of SiGe HBTs for extreme environment electronics. Proc IEEE, 2005, 93: 1559–1582

    Article  Google Scholar 

  6. Krithivasan R, Yuan Lu R, Cressler J D, et al. Half-terahertz operation of SiGe HBTs. IEEE Electron Device Lett, 2006, 27: 567–569

    Article  Google Scholar 

  7. Marshall P W, Carts M A, Campbell A, et al. Single event effects in circuit-hardened SiGe HBT logic at Gigabit per second data rates. IEEE Trans Nucl Sci, 2001, 47: 2669–2674

    Article  Google Scholar 

  8. Montes E J, Reed R A, Pellish J A, et al. Single event upset mechanisms for low-energy-deposition events in SiGe HBTs. IEEE Trans Nucl Sci, 2008, 55: 1581–1586

    Article  Google Scholar 

  9. Vizkelethy G, Phillips S D, Najafizadeh L, et al. Nuclear microbeam studies of silicon-germanium heterojunction bipolar transistors (HBTs). Nucl Instruments Methods Phys Res Sect B-Beam Interactions Mater Atoms, 2010, 268: 2092–2098

    Article  Google Scholar 

  10. Pellish J A, Reed R A, Sutton A K, et al. A generalized SiGe HBT single-Event effects model for on-orbit event rate calculations. IEEE Trans Nucl Sci, 2007, 54: 2322–2329

    Article  Google Scholar 

  11. Pellish J A, Reed R A, McMorrow D, et al. Heavy ion microbeam- and broadbeam-induced transients in SiGe HBTs. IEEE Trans Nucl Sci, 2009, 56: 3078–3084

    Article  Google Scholar 

  12. Varadharajaperumal M, Niu G, Krithivasan R, et al. 3-D simulation of heavy-ion induced charge collection in SiGe HBTs. IEEE Trans Nucl Sci, 2004, 50: 2191–2198

    Article  Google Scholar 

  13. Marshall P, Carts M, Campbell A, et al. A comparative study of heavy-ion and proton-induced bit-error sensitivity and complex burst-error modes in commercially available high-speed SiGe BiCMOS. IEEE Trans Nucl Sci, 2004, 51: 3457–3463

    Article  Google Scholar 

  14. Sutton A K, Moen K, Cressler J D, et al. Proton-induced SEU in SiGe digital logic at cryogenic temperatures. Solid State Electron, 2008, 52: 1652–1659

    Article  Google Scholar 

  15. Zhang J, Guo Q, Guo H, et al. Impact of bias conditions on total ionizing dose effects of in SiGe HBT. IEEE Trans Nucl Sci, 2016, 63: 1251–1258

    Article  Google Scholar 

  16. Liu M H, Lu W, Ma W Y, et al. Total ionizing dose effects of domestic SiGe HBTs under different dose rates. Chin Phys C, 2016, 40: 036003

    Article  Google Scholar 

  17. Zhang J, Guo H, Zhang F, et al. Heavy ion micro-beam study of single-event transient (SET) in SiGe heterjunction bipolar transistor. Sci China Inf Sci, 2017, 60: 120404

    Article  Google Scholar 

  18. Reed R A, Marshall P W, Pickel J C, et al. Heavy-ion broad-beam and microprobe studies of single-event upsets in 0.20-μm SiGe hetero-junction bipolar transistors and circuits. IEEE Trans Nucl Sci, 2004, 50: 2184–2190

    Article  Google Scholar 

  19. Li P, He C H, Guo G, et al. Heavy ion and laser microbeam induced current transients in SiGe heterojunction bipolar transistor. Chin Phys Lett, 2017, 34: 108501

    Article  Google Scholar 

  20. Zhang J, He C, Guo H, et al. 3-D simulation study of single event effects of SiGe heterojunction bipolar transistor in extreme environment. MicroElectron Reliability, 2015, 55: 1180–1186

    Article  Google Scholar 

  21. Wei J, He C, Li P, et al. Simulation of substrate contact effects on heavy ion-induced current transient in SiGe HBT. MicroElectron Reliability, 2019, 95: 28–35

    Article  Google Scholar 

  22. Varadharajaperumal M, Niu G, Wei X, et al. 3-D simulation of SEU hardening of SiGe HBTs using shared dummy collector. IEEE Trans Nucl Sci, 2007, 54: 2330–2337

    Article  Google Scholar 

  23. Wei J N, He C H, Li P, et al. Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD. Chin Phys B, 2019, 28: 068503

    Article  Google Scholar 

  24. Messenger G C, Ash M S. Single Event Phenomena. Boston: Springer, 1997

    Book  Google Scholar 

  25. Warren K M, Sierawski B D, Weller R A, et al. Predicting thermal neutron-induced soft errors in static memories using TCAD and physics-based Monte Carlo simulation tools. IEEE Electron Device Lett, 2007, 28: 180–182

    Article  Google Scholar 

  26. Warren K M, Weller R A, Sierawski B D, et al. Application of RADSAFE to model the single event upset response of a 0.25 μm CMOS SRAM. IEEE Trans Nucl Sci, 2007, 54: 898–903

    Article  Google Scholar 

  27. Pellish J A, Reed R A, Schrimpf R D, et al. Substrate engineering concepts to mitigate charge collection in deep trench isolation technologies. IEEE Trans Nucl Sci, 2006, 53: 3298–3305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoHui He.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11775167, 61574171 and 11575138). The authors would like to thank the staffs of CIAE for the help during proton irradiation experiment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Li, Y., Yang, W. et al. Proton-induced current transient in SiGe HBT and charge collection model based on Monte Carlo simulation. Sci. China Technol. Sci. 63, 851–858 (2020). https://doi.org/10.1007/s11431-019-1474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-019-1474-x

Keywords

Navigation