Skip to main content
Log in

Challenges and opportunities in chemomechanics of materials: A perspective

  • Perspective
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Chemomechanics of materials is an exciting and fast growing field where mechanics meets chemistry. This perspective presents a brief overview of recent advance in the study of materials chemomechanics. We identify challenges and opportunities for tackling the long-standing and emerging problems for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cottrell A H, Bilby B A. Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc A, 1949, 62: 49–62

    Article  Google Scholar 

  2. Rice J R. Thermodynamics of the quasi-static growth of Griffith cracks. J Mech Phys Solids, 1978, 26: 61–78

    Article  MATH  Google Scholar 

  3. Lawn B. Fracture of Brittle Solids. Cambridge: Cambridge University Press, 1993

    Book  Google Scholar 

  4. Michalske T A, Freiman S W. A molecular interpretation of stress corrosion in silica. Nature, 1982, 295: 511–512

    Article  Google Scholar 

  5. Rice J R. Hydrogen and interfacial cohesion. In: Thompson A W, Bernstein I M, eds. Effect of Hydrogen on Behavior of Materials. New York: Metallurgical Society of AIME, 1976. 455–466

    Google Scholar 

  6. Argon A S. Strengthening Mechanisms in Crystal Plasticity. New York: Oxford Unversity Press, 2008

    Google Scholar 

  7. Cabrera N, Mott N F. Theory of the oxidation of metals. Rep Prog Phys, 1948, 12: 163–184

    Article  Google Scholar 

  8. Mott N F, Rigo S, Rochet F, et al. Oxidation of silicon. Philos Mag B, 1989, 60: 189–212

    Article  Google Scholar 

  9. Pastewka L, Moser S, Gumbsch P, et al. Anisotropic mechanical amorphization drives wear in diamond. Nat Mater, 2011, 10: 34–38

    Article  Google Scholar 

  10. Zhu T, Li J. Ultra-strength materials. Prog Mater Sci, 2010, 55: 710–757

    Article  Google Scholar 

  11. Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367

    Article  Google Scholar 

  12. Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607

    Article  Google Scholar 

  13. Dong X, Fang X, Feng X, et al. Diffusion and stress coupling effect during oxidation at high temperature. J Am Ceram Soc, 2013, 96: 44–46

    Article  Google Scholar 

  14. McDowell M T, Lee S W, Nix W D, et al. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv Mater, 2013, 25: 4966–4985

    Article  Google Scholar 

  15. Suo Z. Mechanics of stretchable electronics and soft machines. MRS Bull, 2012, 37: 218–225

    Article  Google Scholar 

  16. Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 2010, 330: 1515–1520

    Article  Google Scholar 

  17. Liu X H, Liu Y, Kushima A, et al. In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater, 2012, 2: 722–741

    Article  Google Scholar 

  18. McDowell M T, Xia S, Zhu T. The mechanics oflarge-volume-change transformations in high-capacity battery materials. Extreme Mech Lett, 2016, 9: 480–494

    Article  Google Scholar 

  19. Zhang S, Zhao K, Zhu T, et al. Electrochemomechanical degradation of high-capacity battery electrode materials. Prog Mater Sci, 2017, 89: 479–521

    Article  Google Scholar 

  20. Liu X H, Zheng H, Zhong L, et al. Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett, 2011, 11: 3312–3318

    Article  Google Scholar 

  21. Liu X H, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano, 2012, 6: 1522–1531

    Article  Google Scholar 

  22. Wang J W, He Y, Fan F, et al. Two-phase electrochemical lithiation in amorphous silicon. Nano Lett, 2013, 13: 709–715

    Article  Google Scholar 

  23. Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium. Science, 2015, 347: 635–639

    Article  Google Scholar 

  24. Li Y, Fang X, Qu Z, et al. In situ full-field measurement of surface oxidation on Ni-based alloy using high temperature scanning probe microscopy. Sci Rep, 2018, 8: 6684

    Article  Google Scholar 

  25. Hao F, Gao X, Fang D. Diffusion-induced stresses of electrode nanomaterials in lithium-ion battery: The effects ofsurface stress. J Appl Phys, 2012, 112: 103507

    Article  Google Scholar 

  26. Yu P, Shen S. A fully coupled theory and variational principle for thermal-electrical-chemical-mechanical processes. J Appl Mech, 2014, 81: 111005

    Article  Google Scholar 

  27. Wang F, Turcheniuk K, Wang B, et al. Mechanisms of transformation of bulk aluminum-lithium alloys to aluminum metal-organic nanowires. J Am Chem Soc, 2018, 140: 12493–12500

    Article  Google Scholar 

  28. Hong W, Zhao X, Zhou J, et al. A theory of coupled diffusion and large deformation in polymeric gels. J Mech Phys Solids, 2008, 56: 1779–1793

    Article  MATH  Google Scholar 

  29. Zhao K, Pharr M, Cai S, et al. Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J Am Ceram Soc, 2011, 94: s226–s235

    Article  Google Scholar 

  30. Keralavarma S M, Bower A F, Curtin W A. Quantum-to-continuum prediction of ductility loss in aluminium-magnesium alloys due to dynamic strain aging. Nat Commun, 2014, 5: 4604

    Article  Google Scholar 

  31. Nalla R K, Kinney J H, Ritchie R O. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater, 2003, 2: 164–168

    Article  Google Scholar 

  32. Gao H. Probing mechanical principles of cell-nanomaterial interactions. J Mech Phys Solids, 2014, 62: 312–339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Fang, X., Wang, B. et al. Challenges and opportunities in chemomechanics of materials: A perspective. Sci. China Technol. Sci. 62, 1385–1387 (2019). https://doi.org/10.1007/s11431-018-9516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9516-2

Keywords

Navigation