Skip to main content
Log in

Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this contribution, we present the tandem pumping avenue leveraged performance scaling of random fiber laser to record 3 kW level with inherent temporal stability and near-diffraction-limited beam quality. The high power system employs a four-stage master oscillator power amplifier chain. The master oscillator is a half-opened cavity structured random distributed feedback fiber laser centered at 1080 nm and pumped by incoherent amplified spontaneous emission source. Narrowband random laser seed is selected by employing a spectral filtering module with a maximum output power of 1.08 W, full width at half maximum linewidth of 0.47 nm and spectral optical-signal-to-noise ratio of about 42 dB. As to the main amplification stage, for given 104 W pre-amplified random laser seed and 3.61 kW pump laser, an ultimate output power of 3.03 kW can be obtained, corresponding to an optical-to-optical conversion efficiency of 81.05%. Nearly single-transverse-mode amplified random laser can be achieved even at full power level for inherent high thermal modal instability threshold enabled by tandem pumping and inducing bending loss for high-order transverse-mode. Further performance scaling of this high power random laser system, such as power boosting, operation wavelength tuning and linewidth alteration, is the next goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turitsyn S K, Babin S A, El-Taher A E, et al. Random distributed feedback fibre laser. Nat Photon, 2010, 4: 231–235

    Article  Google Scholar 

  2. Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photon, 2012, 6: 355–359

    Article  Google Scholar 

  3. Turitsyn S K, Babin S A, Churkin D V, et al. Random distributed feedback fibre lasers. Phys Rep, 2014, 542: 133–193

    Article  Google Scholar 

  4. Churkin D V, Sugavanam S, Vatnik I D, et al. Recent advances in fundamentals and applications of random fiber lasers. Adv Opt Photon, 2015, 7: 516–569

    Article  Google Scholar 

  5. Du X, Zhang H, Xiao H, et al. High-power random distributed feedback fiber laser: From science to application. Ann Der Physik, 2016, 528: 649–662

    Article  Google Scholar 

  6. Huang C, Dong X, Zhang N, et al. Multiwavelength brillouin-erbium random fiber laser incorporating a chirped fiber bragg grating. IEEE J Sel Top Quantum Electron, 2014, 20: 294–298

    Article  Google Scholar 

  7. Saleh S, Cholan N A, Sulaiman A H, et al. Stable multiwavelength erbium-doped random fiber laser. IEEE J Sel Top Quantum Electron, 2018, 24: 1–6

    Article  Google Scholar 

  8. Babin S A, El-Taher A E, Harper P, et al. Tunable random fiber laser. Phys Rev A, 2011, 84: 4903–4911

    Article  Google Scholar 

  9. Pang M, Bao X, Chen L. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Opt Lett, 2013, 38: 1866–1868

    Article  Google Scholar 

  10. Zhang L, Jiang H, Yang X, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser. Sci Rep, 2017, 7: 42611

    Article  Google Scholar 

  11. Bravo M, Fernandez-Vallejo M, Lopez-Amo M. Internal modulation of a random fiber laser. Opt Lett, 2013, 38: 1542–1544

    Article  Google Scholar 

  12. Yao B C, Rao Y J, Wang Z N, et al. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers. Sci Rep, 2015, 5: 18526

    Article  Google Scholar 

  13. Xu J, Ye J, Liu W, et al. Passively spatiotemporal gain-modulationinduced stable pulsing operation of a random fiber laser. Photon Res, 2017, 5: 598–603

    Article  Google Scholar 

  14. Wang Z N, Rao Y J, Wu H, et al. Long-distance fiber-optic pointsensing systems based on random fiber lasers. Opt Express, 2012, 20: 17695–17700

    Article  Google Scholar 

  15. Zhang H, Zhou P, Xiao H, et al. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Phys Lett, 2014, 11: 075104

    Article  Google Scholar 

  16. Zhang H, Zhou P, Wang X, et al. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Opt Express, 2015, 23: 17138–17144

    Article  Google Scholar 

  17. Xu J, Lou Z, Ye J, et al. Incoherently pumped high-power linearlypolarized single-mode random fiber laser: Experimental investigations and theoretical prospects. Opt Express, 2017, 25: 5609–5617

    Article  Google Scholar 

  18. Zhang H, Huang L, Zhou P, et al. More than 400 W random fiber laser with excellent beam quality. Opt Lett, 2017, 42: 3347–3350

    Article  Google Scholar 

  19. Zhou P, Huang L, Xu J M, et al. High power linearly polarized fiber laser: Generation, manipulation and application. Sci China Tech Sci, 2017, 60: 1784–1800

    Article  Google Scholar 

  20. Zhang L, Dong J, Feng Y. High-power and high-order random raman fiber lasers. IEEE J Sel Top Quantum Electron, 2018, 24: 1–6

    Google Scholar 

  21. Liu W, Ma P, Lv H, et al. General analysis of SRS-limited high-power fiber lasers and design strategy. Opt Express, 2016, 24: 26715–26721

    Article  Google Scholar 

  22. Du X, Zhang H, Ma P, et al. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser. Opt Lett, 2015, 40: 5311–5314

    Article  Google Scholar 

  23. Xu J, Huang L, Jiang M, et al. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output. Photon Res, 2017, 5: 350–354

    Article  Google Scholar 

  24. Li Y, Li T, Peng W, et al. Narrow spectrum kilowatt-level mopa seeded by Yb-doped random fiber laser. IEEE Photon Tech Lett, 2017, 29: 1844–1847

    Article  Google Scholar 

  25. Huang L, Xu J, Ye J, et al. Power scaling of linearly polarized random fiber laser. IEEE J Sel Top Quantum Electron, 2018, 24: 1–8

    Google Scholar 

  26. Li T L, Zha C W, Peng W J, et al. 2 kW narrow spectrum amplified random fiber laser. Chin J Laser, 2017, 44: 0415003

    Article  Google Scholar 

  27. Chen X L, Zheng Y, Li X, et al. 10.6 GHz linewidth maintained random fiber laser seed source. Chin J Laser, 2017, 44: 0701005

    Article  Google Scholar 

  28. Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt Express, 2011, 19: 13218–13224

    Article  Google Scholar 

  29. Jauregui C, Eidam T, Otto H J, et al. Physical origin of mode instabilities in high-power fiber laser systems. Opt Express, 2012, 20: 12912

    Article  Google Scholar 

  30. Smith A V, Smith J J. Increasing mode instability thresholds of fiber amplifiers by gain saturation. Opt Express, 2013, 21: 15168

    Article  Google Scholar 

  31. Tao R, Ma P, Wang X, et al. Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength. J Opt, 2015, 17: 045504

    Article  Google Scholar 

  32. Tao R, Ma P, Wang X, et al. Study of wavelength dependence of mode instability based on a semi-analytical model. IEEE J Quantum Electron, 2015, 51: 1600106

    Google Scholar 

  33. Jauregui C, Otto H J, Breitkopf S, et al. Optimizing high-power Ybdoped fiber amplifier systems in the presence of transverse mode instabilities. Opt Express, 2016, 24: 7879–7892

    Article  Google Scholar 

  34. Zervas M N. Transverse mode instability analysis in fiber amplifier. In: Proceedings of SPIE Fiber Lasers XIV: Technology and Systems. San Francisco: SPIE, 2017

    Google Scholar 

  35. Xiao H, Zhou P, Wang X, et al. Experimental investigation on 1018-nm high-power ytterbium-doped fiber amplifier. IEEE Photon Tech Lett, 2012, 24: 1088–1090

    Article  Google Scholar 

  36. Chang Y M, Yao T, Jeong H, et al. 3% thermal load measured in tandem-pumped ytterbium-doped fiber amplifier. In: Proceedings of IEEE Conference on Lasers and Electro-Optics (CLEO). San Jose: IEEE, 2014

    Google Scholar 

  37. Jebali M A, Maran J N, LaRochelle S. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping. Opt Lett, 2014, 39: 3974–3977

    Article  Google Scholar 

  38. Zervas M N, Codemard C A. High power fiber lasers: A review. IEEE J Sel Top Quantum Electron, 2014, 20: 219–241

    Article  Google Scholar 

  39. Xiao H, Leng J, Zhang H, et al. High-power 1018 nm ytterbiumdoped fiber laser and its application in tandem pump. Appl Opt, 2015, 54: 8166–8169

    Article  Google Scholar 

  40. Zhou P, Xiao H, Leng J, et al. High-power fiber lasers based on tandem pumping. J Opt Soc Am B, 2017, 34: A29–A36

    Article  Google Scholar 

  41. Li J, Ueda K I, Musha M, et al. Residual pump light as a probe of selfpulsing instability in an ytterbium-doped fiber laser. Opt Lett, 2006, 31: 1450–1452

    Article  Google Scholar 

  42. Upadhyaya B N, Kuruvilla A, Chakravarty U, et al. Effect of laser linewidth and fiber length on self-pulsing dynamics and output stabilization of single-mode Yb-doped double-clad fiber laser. Appl Opt, 2010, 49: 2316–2325

    Article  Google Scholar 

  43. Nuño J, Alcon-Camas M, Ania-Castañón J D. RIN transfer in random distributed feedback fiber lasers. Opt Express, 2012, 20: 27376–27381

    Article  Google Scholar 

  44. Lou Z, Xu J, Huang L, et al. Linearly-polarized random distributed feedback Raman fiber laser with record power. Laser Phys Lett, 2017, 14: 055102

    Article  Google Scholar 

  45. Wang P, Sahu J K, Clarkson W A. Power scaling of ytterbium-doped fiber superfluorescent sources. IEEE J Sel Top Quantum Electron, 2007, 13: 580–587

    Article  Google Scholar 

  46. Xu J, Huang L, Leng J, et al. 1.01 kW superfluorescent source in allfiberized MOPA configuration. Opt Express, 2015, 23: 5485–5490

    Article  Google Scholar 

  47. Wang W, Leng J, Gao Y, et al. Influence of temporal characteristics on the power scalability of the fiber amplifier. Laser Phys, 2015, 25: 035101

    Article  Google Scholar 

  48. Zhang W L, Rao Y J, Zhu J M, et al. Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity. Opt Express, 2012, 20: 14400–14405

    Article  Google Scholar 

  49. Wang Z, Wu H, Fan M, et al. High power random fiber laser with short cavity length: Theoretical and experimental investigations. IEEE J Sel Top Quantum Electron, 2015, 21: 10–15

    Article  Google Scholar 

  50. Park K D, Min B, Kim P, et al. Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier. Opt Lett, 2002, 27: 155–157

    Article  Google Scholar 

  51. Xu J, Zhou P, Leng J, et al. Powerful linearly-polarized high-order random fiber laser pumped by broadband amplified spontaneous emission source. Sci Rep, 2016, 6: 35213

    Article  Google Scholar 

  52. Brilliant N A, Lagonik K. Thermal effects in a dual-clad ytterbium fiber laser. Opt Lett, 2001, 26: 1669–1671

    Article  Google Scholar 

  53. Zhou P, Wang X, Xiao H, et al. Review on recent progress on Ybdoped fiber laser in a variety of oscillation spectral ranges. Laser Phys, 2012, 22: 823–831

    Article  Google Scholar 

  54. Liu W, Kuang W, Huang L, et al. Modeling of the spectral properties of CW Yb-doped fiber amplifier and experimental validation. Laser Phys Lett, 2015, 12: 045104

    Article  Google Scholar 

  55. Tao R, Su R, Ma P, et al. Suppressing mode instabilities by optimizing the fiber coiling methods. Laser Phys Lett, 2017, 14: 025101

    Article  Google Scholar 

  56. Huang L, Kong L, Leng J, et al. Impact of high-order-mode loss on high-power fiber amplifiers. J Opt Soc Am B, 2016, 33: 1030–1037

    Article  Google Scholar 

  57. Kong L, Leng J, Zhou P, et al. Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber. Opt Express, 2017, 25: 23437–23450

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JiangMing Xu or Pu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Ye, J., Zhou, P. et al. Tandem pumping architecture enabled high power random fiber laser with near-diffraction-limited beam quality. Sci. China Technol. Sci. 62, 80–86 (2019). https://doi.org/10.1007/s11431-017-9226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9226-x

Keywords

Navigation