Skip to main content
Log in

The effect of surface anisotropy on contact angles and the characterization of elliptical cap droplets

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, the variation of contact angles of a droplet on grooved surfaces was studied from microscale to macroscale experimentally and theoretically. The experimental results indicated that the contact angle changes nonlinearly with anisotropic factor. To get clear of the changing process of contact angle on grooved surfaces from microscale to macroscale, we carried out theoretical analysis with moment equilibrium method being adopted. In addition, the variation of contact angles in different directions was investigated and a mathematic model to calculate arbitrary contact angles around the elliptic contact line was suggested. For the convenience of potential applications, a symbolic contact angle was proposed to characterize the ellipsoidal cap droplet on grooved surfaces. Our results will offer help to the future design of patterned surfaces in practical applications, and deepen the understanding of wetting behavior on grooved surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao Y P. Physical Mechanics of Surfaces and Interfaces (in Chinese). Beijing: Science Press, 2012

    Google Scholar 

  2. Sun G, Fang Y, Cong Q, et al. Anisotropism of the non-smooth surface of butterfly wing. J Bionic Eng, 2009, 6: 71–76

    Article  Google Scholar 

  3. Vernik L, Liu X. Velocity anisotropy in shales: A petrophysical study. Geophysics, 1997, 62: 521–532

    Article  Google Scholar 

  4. Xia D, Johnson L M, López G P. Anisotropic wetting surfaces with one-dimesional and directional structures: Fabrication approaches, wetting properties and potential applications. Adv Mater, 2012, 24: 1287–1302

    Article  Google Scholar 

  5. Yuan Q, Huang X, Zhao Y P. Dynamic spreading on pillar-arrayed surfaces: Viscous resistance versus molecular friction. Phys Fluids, 2014, 26: 092104

    Article  Google Scholar 

  6. Quéré D. Wetting and roughness. Annu Rev Mater Res, 2008, 38: 71–99

    Article  Google Scholar 

  7. Parker A R, Lawrence C R. Water capture by a desert beetle. Nature, 2001, 414: 33–34

    Article  Google Scholar 

  8. Yuan Q, Zhao Y P. Wetting on flexible hydrophilic pillar-arrays. Sci Rep, 2013, 3: 1944

    Article  Google Scholar 

  9. Chen L, Auernhammer G K, Bonaccurso E. Short time wetting dynamics on soft surfaces. Soft Matter, 2011, 7: 9084–9089

    Article  Google Scholar 

  10. Kreder M J, Alvarenga J, Kim P, et al. Design of anti-icing surfaces: Smooth, textured or slippery? Nat Rev Mater, 2016, 1: 15003

    Article  Google Scholar 

  11. Wang S, Yang Z, Gong G, et al. Icephobicity of penguins Spheniscus Humboldti and an artificial replica of penguin feather with airinfused hierarchical rough structures. J Phys Chem C, 2016, 120: 15923–15929

    Article  Google Scholar 

  12. Wen C Y, Tersoff J, Hillerich K, et al. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys Rev Lett, 2011, 107: 025503

    Article  Google Scholar 

  13. Jacobsson D, Panciera F, Tersoff J, et al. Interface dynamics and crystal phase switching in GaAs nanowires. Nature, 2016, 531: 317–322

    Article  Google Scholar 

  14. Schutzius T M, Jung S, Maitra T, et al. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature, 2015, 527: 82–85

    Article  Google Scholar 

  15. Dubov A L, Mourran A, Möller M, et al. Contact angle hysteresis on superhydrophobic stripes. J Chem Phys, 2014, 141: 074710

    Article  Google Scholar 

  16. Chi L F, Gleiche M, Fuchs H. Nanoscopic channel lattices with controlled anisotropic wetting. Nature, 2000, 403: 173–175

    Article  Google Scholar 

  17. Yu N, Wang S, Liu Y, et al. Thermal-responsive anisotropic wetting microstructures for manipulation of fluids in microfluidics. Langmuir, 2017, 33: 494–502

    Article  Google Scholar 

  18. Wang Z, Zhao Y P. Wetting and electrowetting on corrugated substrates. Phys Fluids, 2017, 29: 067101

    Article  Google Scholar 

  19. Brandon S, Haimovich N, Yeger E, et al. Partial wetting of chemically patterned surfaces: The effect of drop size. J Colloid Interface Sci, 2003, 263: 237–243

    Article  Google Scholar 

  20. Fürstner R, Barthlott W, Neinhuis C, et al. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir, 2005, 21: 956–961

    Article  Google Scholar 

  21. Liu C, Ju J, Ma J, et al. Directional drop transport achieved on high-temperature anisotropic wetting surfaces. Adv Mater, 2014, 26: 6086–6091

    Article  Google Scholar 

  22. Seemann R, Brinkmann M, Kramer E J, et al. Wetting morphologies at microstructured surfaces. Proc Natl Acad Sci USA, 2005, 102: 1848–1852

    Article  Google Scholar 

  23. Chu K H, Xiao R, Wang E N. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater, 2010, 9: 413–417

    Article  Google Scholar 

  24. Park K C, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps. Nature, 2016, 531: 78–82

    Article  Google Scholar 

  25. Xia D, Brueck S R J. Strongly anisotropic wetting on one-dimensional nanopatterned surfaces. Nano Lett, 2008, 8: 2819–2824

    Article  Google Scholar 

  26. Wenzel R N. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 1936, 28: 988–994

    Article  Google Scholar 

  27. Cassie A B D, Baxter S. Wettability of porous surfaces. Trans Faraday Soc, 1944, 40: 546–551

    Article  Google Scholar 

  28. Yang J, Rose F R A J, Gadegaard N, et al. Effect of sessile drop volume on the wetting anisotropy observed on grooved surfaces. Langmuir, 2009, 25: 2567–2571

    Article  Google Scholar 

  29. Hirvi J T, Pakkanen T A. Wetting of nanogrooved polymer surfaces. Langmuir, 2007, 23: 7724–7729

    Article  Google Scholar 

  30. Zhao Y, Lu Q, Li M, et al. Anisotropic wetting characteristics on submicrometer-scale periodic grooved surface. Langmuir, 2007, 23: 6212–6217

    Article  Google Scholar 

  31. Li W, Fang G, Li Y, et al. Anisotropic wetting behavior arising from superhydrophobic surfaces: Parallel grooved structure. J Phys Chem B, 2008, 112: 7234–7243

    Article  Google Scholar 

  32. Chen Y, He B, Lee J, et al. Anisotropy in the wetting of rough surfaces. J Colloid Interface Sci, 2005, 281: 458–464

    Article  Google Scholar 

  33. Kusumaatmaja H, Vrancken R J, Bastiaansen C W M, et al. Anisotropic drop morphologies on corrugated surfaces. Langmuir, 2008, 24: 7299–7308

    Article  Google Scholar 

  34. Chung J Y, Youngblood J P, Stafford C M. Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter, 2007, 3: 1163–1169

    Article  Google Scholar 

  35. Zhao Y P. Bridging length and time scales in moving contact line problems. Sci China-Phys Mech Astron, 2016, 59: 114631

    Article  Google Scholar 

  36. Yuan Q, Zhao Y P. Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proc R Soc A-Math Phys Eng Sci, 2012, 468: 310–322

    Article  Google Scholar 

  37. Bell M S, Shahraz A, Fichthorn K A, et al. Effects of hierarchical surface roughness on droplet contact angle. Langmuir, 2015, 31: 6752–6762

    Article  Google Scholar 

  38. Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14: 1857–1860

    Article  Google Scholar 

  39. De Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. New York: Springer, 2004

    Book  MATH  Google Scholar 

  40. Zhao Y P. Nano and Mesoscopic Mechanics (in Chinese). Beijing: Science Press, 2014

    Google Scholar 

  41. Sefiane K. Effect of nonionic surfactant on wetting behavior of an evaporating drop under a reduced pressure environment. J Colloid Interface Sci, 2004, 272: 411–419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaPu Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, E. & Zhao, Y. The effect of surface anisotropy on contact angles and the characterization of elliptical cap droplets. Sci. China Technol. Sci. 61, 309–316 (2018). https://doi.org/10.1007/s11431-017-9149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-017-9149-1

Keywords

Navigation