Skip to main content
Log in

Synergetic effects of blended materials for Lithium-ion batteries

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

LiNi1/3Co1/3Mn1/3O2, LiMn2O4 and LiCoO2 are paired to make the blended materials for the cathode of lithium-ion batteries. The factors impacting on the characteristics of blended materials are studied using constant current charge/discharge measurement and electrochemical impedance spectroscopy. The results show that the three pairs of blended materials exhibit very different synergetic effects in high C-rate discharging. The mechanism of particle synergetic effect has a physical root on the compensating material property of blending components, which fundamentally correlates with their similarity and difference in crystalline and electronic structures. The AC impedance show the obvious changes that alternate the high C-rate performance, due to reduced particle impedance in blended materials. The pairs of LiNi1/3Co1/3Mn1/3O2-LiMn2O and LiCoO2-LiMn2O4 present obvious increases in high C-rate reversible capacities than does the pair LiCoO2-LiNi1/3Co1/3Mn1/3O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hou P, Wang X, Song D, et al. Design, synthesis, and performances of double-shelled LiNi0.5Co0.2Mn0.3O2 as cathode for long-life and safe Li-ion battery. J Power Sources, 2014, 265: 174–181

    Article  Google Scholar 

  2. Zhang X H, Chen Z L, Chen X B, et al. Characterization of and insight into the electrochemistry of MoS2. J East China Normal Univ (Natural Sci), 2015, 03: 105–115

    Google Scholar 

  3. Chen K, Xue D. Materials chemistry toward electrochemical energy storage. J Mater Chem A, 2016, 4: 7522–7537

    Article  Google Scholar 

  4. Chen K, Sun C, Xue D. Morphology engineering of high performance binary oxide electrodes. Phys Chem Chem Phys, 2015, 17: 732–750

    Article  Google Scholar 

  5. Fergus J W. Recent developments in cathode materials for lithium ion batteries. J Power Sources, 2010, 195: 939–954

    Article  Google Scholar 

  6. Chikkannanavar S B, Bernardi D M, Liu L. A review of blended cathode materials for use in Li-ion batteries. J Power Sources, 2014, 248: 91–100

    Article  Google Scholar 

  7. Manivannan V, Chennabasappa M, Garrett J. Optimization and characterization of lithium ion cathode materials in the system (1–x–y)LiNi0.8Co0.2O2 • xLi2MnO3 • yLiCoO2. Energies, 2010, 3: 847–865

    Article  Google Scholar 

  8. Wu G L, Liu R M, Yang X H, et al. Preparation and application of LiCoO2 as positive active material for lithium-ion batteries. Battery Bimonthly, 2000, 03: 105–107

    Google Scholar 

  9. Liu S, Xiong L, He C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. J Power Sources, 2014, 261: 285–291

    Article  Google Scholar 

  10. Yu Z, Zhao L. Structure and electrochemical properties of LiMn2O4. Trans Nonferrous Metals Soc China, 2007, 17: 659–664

    Article  Google Scholar 

  11. Lee K S, Myung S T, Kim D W, et al. AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries. J Power Sources, 2011, 196: 6974–6977

    Article  Google Scholar 

  12. Nam K W, Yoon W S, Shin H, et al. In situ X-ray diffraction studies of mixed LiMn2O4–LiNi1/3Co1/3Mn1/3O2 composite cathode in Li-ion cells during charge–discharge cycling. J Power Sources, 2009, 192: 652–659

    Article  Google Scholar 

  13. Smith A J, Smith S R, Byrne T, et al. Synergies in Blended LiMn2O4 and Li[Ni1/3Mn1/3Co1/3]O2 Positive Electrodes. J Electrochemical Soc, 2012, 159: A1696–A1701

    Article  Google Scholar 

  14. Hu E, Bak S M, Senanayake S D, et al. Thermal stability in the blended lithium manganese oxide–Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study. J Power Sources, 2015, 277: 193–197

    Article  Google Scholar 

  15. Kresse G, Furthmüller J. Efficient iterative schemes forab initio totalenergy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  Google Scholar 

  16. Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid- metal–amorphous-semiconductor transition in germanium. Phys Rev B, 1994, 49: 14251–14269

    Article  Google Scholar 

  17. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B, 1999, 59: 1758–1775

    Article  Google Scholar 

  18. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  Google Scholar 

  19. Liechtenstein A I, Anisimov V I, Zaanen J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys Rev B, 1995, 52: R5467–R5470

    Article  Google Scholar 

  20. Ohzuku T, Ueda A, Nagayama M, et al. Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells. Electrochim Acta, 1993, 38: 1159–1167

    Article  Google Scholar 

  21. Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts. J Power Sources, 2009, 191: 644–647

    Article  Google Scholar 

  22. Wang H Q, Lai F Y, Li Y, et al. Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim Acta, 2015, 177: 290–297

    Article  Google Scholar 

  23. Koyama Y, Tanaka I, Adachi H, et al. Crystal and electronic structures of superstructural Li1-x[Co1/3Ni1/3Mn1/3]O2 (0 = x = 1). J Power Sources, 2003, 119-121: 644–648

    Article  Google Scholar 

  24. Chen Z, Li J. A new method applicable to study solid compounds with multiple polyhedral structures. J Comput Chem, 2016, 37: 1476–1483

    Article  Google Scholar 

  25. Deng B, Nakamura H, Yoshio M. Comparison and improvement of the high rate performance of different types of LiMnO spinels. J Power Sources, 2005, 141: 116–121

    Article  Google Scholar 

  26. Ohzuku T. Solid-state redox reactions of LiCoO2 (r3m) for 4 volt secondary lithium cells. J Electrochem Soc, 1994, 141: 2972–2977

    Article  Google Scholar 

  27. Sun Y K, Cho S W, Myung S T, et al. Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2. Electrochim Acta, 2007, 53: 1013–1019

    Article  Google Scholar 

  28. Kobayashi T, Kawasaki N, Kobayashi Y, et al. A method of separating the capacities of layer and spinel compounds in blended cathode. J Power Sources, 2014, 245: 1–6

    Article  Google Scholar 

  29. Wang L, Zhao J S, He X M, et al. Electrochemical impedance spectroscopy (eis) study of LiNi1/3Co1/3Mn1/3O2 for li-ion batteries. Int J Electrochem Sci, 2012, 7: 345–353

    Google Scholar 

  30. Chen K, Xue D, Komarneni S. Beyond theoretical capacity in Cu-based integrated anode: Insight into the structural evolution of CuO. J Power Sources, 2015, 275: 136–143

    Article  Google Scholar 

  31. Chen K, Xue D. Ex situ identification of the Cu+ long-range diffusion path of a Cu-based anode for lithium ion batteries. Phys Chem Chem Phys, 2014, 16: 11168–11172

    Article  Google Scholar 

  32. Xia C, Baek B, Xu F, et al. Modification of electrolyte transport within the cathode for high-rate cycle performance of Li-ion battery. J Solid State Electrochem, 2013, 17: 2151–2156

    Article  Google Scholar 

  33. Röder P, Stiaszny B, Ziegler J C, et al. The impact of calendar aging on the thermal stability of a LiMn2O4–Li(Ni1/3Mn1/3Co1/3)O2/graphite lithium-ion cell. J Power Sources, 2014, 268: 315–325

    Article  Google Scholar 

  34. Chen Z, Zhang C, Zhang Z, et al. Correlation of intercalation potential with d-electron configurations for cathode compounds of lithium-ion batteries. Phys Chem Chem Phys, 2014, 16: 13255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, H., Guo, Y., Chen, Z. et al. Synergetic effects of blended materials for Lithium-ion batteries. Sci. China Technol. Sci. 59, 1370–1376 (2016). https://doi.org/10.1007/s11431-016-0255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-0255-6

Keywords

Navigation