Skip to main content
Log in

Influence of crystal structure on friction coefficient of ZnO films prepared by atomic layer deposition

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this work, the influence of crystal structure on the friction coefficient of zinc oxide (ZnO) films was studied. The ZnO films were deposited on a Si (100) substrate using an atomic layer deposition process, and the crystal structure of the ZnO films was changed by adjusting the substrate temperature. The surface morphology and the crystal structure of the ZnO films were measured by an atomic force microscope and an X-ray diffractometer, respectively, and the friction coefficient of the ZnO films was measured by a ball-on-disk dry sliding tester. The results show that the ZnO films deposited at substrate temperatures below 200°C are dominated by (100), (002) and (101)-orientated crystals, while the ZnO films deposited at substrate temperatures above 250°C are dominated by (002)-orientated crystals, and that the crystal structure influences the friction coefficient of ZnO films greatly. The ZnO films with (002)-orientated crystals possess a larger friction coefficient than those with other orientated crystals. In order to verify this conclusion, we measured the friction behavior of the ZnO single crystals with different orientations. The results are consistent well with our conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prasad S V, Nainaparampil J J, Zabinski J S. Tribological behavior of alumina doped zinc oxide films grown by pulsed laser deposition. J Vac Sci Technol A, 2002, 5: 1738–1743

    Article  Google Scholar 

  2. Charles S, Evans J, Reece M J, et al. High field ZnO varistors prepared by spark plasma sintering. Adv Appl Ceram, 2014, 2: 94–97

    Article  Google Scholar 

  3. Wang M H, Ma X Y, Jiang W, et al. Synthesis of doped ZnO nanopowders in alcohol-water solvent for varistors applications. Mater Lett, 2014, 121: 149–151

    Article  Google Scholar 

  4. He X L, Guo H W, Chen J K, et al. Bendable ZnO thin film surface acoustic wave devices on polyethylene terephthalate substrate. Appl Phys Lett, 2014, 21350421

    Google Scholar 

  5. Guo Y J, Lv H B, Li Y F, et al. High frequency microfluidic performance of LiNbO3 and ZnO surface acoustic wave devices. J Appl Phys, 2014, 2: 24501–24507

    Article  Google Scholar 

  6. Serhane R, Abdelli-Messaci S, Lafane S, et al. Pulsed laser deposition of piezoelectric ZnO thin films for bulk acoustic wave devices. Appl Surf Sci, 2014, 288: 572–578

    Article  Google Scholar 

  7. Joshi S, Nayak M M, Rajanna K. Effect of post-deposition annealing on transverse piezoelectric coefficient and vibration sensing performance of ZnO thin films. Appl Surf Sci, 2014, 296: 169–176

    Article  Google Scholar 

  8. Zabinski J S, Corneille J, Prasad S V, et al. Lubricious zinc oxide films: synthesis, characterization and tribological behaviour. J Mater Sci, 1997, 20: 5313–5319

    Article  Google Scholar 

  9. Prasad S V, Zabinski J S. Tribological behavior of nanocrystalline zinc oxide films. Wear, 1997, 203–204: 498–506

    Article  Google Scholar 

  10. Prasad S V, Mcdevitt N T, Zabinski J S. Tribology of tungsten disulfide-nanocrystalline zinc oxide adaptive lubricant films from ambient to 500°C. Wear, 2000, 2: 186–196

    Article  Google Scholar 

  11. Prasad S V, Walck S D, Zabinski J S. Microstructural evolution in lubricious ZnO films grown by pulsed laser deposition. Thin Solid Films, 2000, 1–2: 107–117

    Article  Google Scholar 

  12. Zabinski J S, Sanders J H, Nainaparampil J, et al. Lubrication using a microstructurally engineered oxide: Performance and mechanisms. Tribol Lett, 2000, 2–3: 103–116

    Article  Google Scholar 

  13. Nainaparampil J J, Zabinski J S. Lubricity of zinc oxide thin films: Study of deposition parameters and Si as an additive. J Mater Res, 2001, 12: 3423–3429

    Article  Google Scholar 

  14. Chai Z M, Lu X C, He D N. Atomic layer deposition of zinc oxide films: Effects of nanocrystalline characteristics on tribological performance. Surf Coat Technol, 2012, 207: 361–366

    Article  Google Scholar 

  15. Mohseni H, Scharf T W. Atomic layer deposition of ZnO/Al2O3/ZrO2 nanolaminates for improved thermal and wear resistance in carbon-carbon composites. J Vac Sci Technol A, 2012, 01A1491

    Google Scholar 

  16. Mohseni H, Mensah B A, Gupta N, et al. On tailoring the nanocrystalline structure of ZnO to achieve low friction. Tribol Lubr Technol, 2012, 1: 17–19

    Google Scholar 

  17. Goto M, Kasahara A, Tosa M. Low-friction coatings of zinc oxide synthesized by optimization of crystal preferred orientation. Tribol Lett, 2011, 2: 155–162

    Article  Google Scholar 

  18. Krupanidhi S B, Sayer M. Position and pressure effects in Rf-magnetron reactive sputter deposition of piezoelectric zinc-oxide. J Appl Phys, 1984, 11: 3308–3318

    Article  Google Scholar 

  19. Kappertz O, Drese R, Ngaruiya J M, et al. Reactive sputter deposition of zinc oxide: Employing resputtering effects to tailor film properties. Thin Solid Films, 2005, 1–2: 64–67

    Article  Google Scholar 

  20. Choi J H, Tabata H, Kawai T. Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition. J Cryst Growth, 2001, 4: 493–500

    Article  Google Scholar 

  21. Villanueva Y Y, Liu D R, Cheng P T. Pulsed laser deposition of zinc oxide. Thin Solid Films, 2006, 1–2: 366–369

    Article  Google Scholar 

  22. Valerini D, Caricato A P, Lomascolo M et al. Zinc oxide nanostructures grown by pulsed laser deposition. Appl Phys A: Mater Sci Process, 2008, 3: 729–733

    Article  Google Scholar 

  23. Valerini D, Caricato A P, Creti A, et al. Morphology and photoluminescence properties of zinc oxide films grown by pulsed laser deposition. Appl Surf Sci, 2009, 24: 9680–9683

    Article  Google Scholar 

  24. Waugh M R, Hyett G, Parkin I P. Zinc oxide thin films grown by aerosol assisted CVD. Chem Vapor Depos, 2008, 11–12: 366–372

    Article  Google Scholar 

  25. Favier A, Munoz D, de Nicolas S M et al. Boron-doped zinc oxide layers grown by metal-organic CVD for silicon heterojunction solar cells applications. Sol Energy Mater Sol Cells, 2011, 4: 1057–1061

    Article  Google Scholar 

  26. Pung S Y, Choy K L, Hou X, et al. Preferential growth of ZnO thin films by the atomic layer deposition technique. Nanotechnology, 2008, 43560943

    Google Scholar 

  27. Wojcik A, Godlewski M, Guziewicz E, et al. Controlling of preferential growth mode of ZnO thin Films grown by atomic layer deposition. J Cryst Growth, 2008, 2: 284–289

    Article  Google Scholar 

  28. Leskela M, Ritala M. Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films, 2002, 1: 138–146

    Article  Google Scholar 

  29. Leskela M, Ritala M. Atomic layer deposition chemistry: Recent developments and future challenges. Angew Chem Int Ed, 2003, 45: 5548–5554

    Article  Google Scholar 

  30. Krajewski T, Guziewicz E, Godlewski M, et al. The influence of growth temperature and precursors’ doses on electrical parameters of ZnO thin films grown by atomic layer deposition technique. Microelectron J, 2009, 2: 293–295

    Article  Google Scholar 

  31. Makino H, Miyake A, Yamada T, et al. Influence of substrate temperature and Zn-precursors on atomic layer deposition of polycrystalline ZnO films on glass. Thin Solid Films, 2009, 10: 3138–3142

    Article  Google Scholar 

  32. Ott A W, Chang R. Atomic layer-controlled growth of transparent conducting ZnO on plastic substrates. Mater Chem Phys, 1999, 2: 132–138

    Article  Google Scholar 

  33. Park S, Lee Y E. Controlling preferred orientation of ZnO thin films by atomic layer deposition. J Mater Sci, 2004, 6: 2195–2197

    Article  Google Scholar 

  34. Fujimura N, Nishihara T, Goto S, et al. Control of preferred orientation for ZnOx films-control of self-texture. J Cryst Growth, 1993, 1–2: 269–279

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinChun Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, Z., Liu, Y., Lu, X. et al. Influence of crystal structure on friction coefficient of ZnO films prepared by atomic layer deposition. Sci. China Technol. Sci. 59, 506–512 (2016). https://doi.org/10.1007/s11431-015-5979-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5979-9

Keywords

Navigation