Skip to main content
Log in

A general, rapid and solvent-free approach to fabricating nanostructured polymer surfaces

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A general, rapid and solvent-free approach is proposed to fabricate nanostructured polymer surfaces by coupling ultrasonic vibration and anodized aluminum oxide templating. With our approach, hollow nanorods or nanofibers with controlled diameter and length are prepared on polymer surfaces. The whole fabrication process is completed in ∼30 s and equally applicable to polymers of different crystalline structures. The wettability of the as-fabricated polymer surfaces (being hydrophilic, hydrophobic, highly hydrophobic or even superhydrophobic) is readily regulated by adjusting the welding time from 0 s to a maximum of 10 s. Our approach can be a promising industrial basis for manufacturing functional nanomaterials in the fields of electronics, optics, sensors, biology, medicine, coating, or fluidic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee W, Jin M K, Yoo W C, et al. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir, 2004, 20: 7665–7669

    Article  Google Scholar 

  2. Lee Y W, Park S H, Kim K B, et al. Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces. Adv Mater, 2007, 19: 2330–2335

    Article  Google Scholar 

  3. Xu Y Y, Zhang F, Feng X L. Patterning of conjugated polymers for organic optoelectronic devices. Small, 2011, 7: 1338–1360

    Article  Google Scholar 

  4. Guo Z G, Liu W M, Su B L. Superhydrophobic surfaces: From natural to biomimetic to functional. J Colloid Inter Sci, 2011, 353: 335–355

    Article  Google Scholar 

  5. Del Campo A, Arzt E. Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem Rev, 2008, 108: 911–945

    Article  Google Scholar 

  6. Widawski G, Rawiso M, Francois B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature, 1994, 369: 387–389

    Article  Google Scholar 

  7. Zhang J, Yu X, Yang P, et al. Microphase separation of block copolymer thin films. Macromol Rapid Commun, 2010, 31: 591–608

    Article  Google Scholar 

  8. Steinhart M, Wendorff J H, Greiner A, et al. Polymer nanotubes by wetting of ordered porous templates. Science, 2002, 296: 1997

    Article  Google Scholar 

  9. Zhu S J, Li Y F, Zhang J H, et al. Biomimetic polyimide nanotube arrays with slippery or sticky superhydrophobicity. J Colloid Interface Sci, 2010, 344: 541–546

    Article  Google Scholar 

  10. Ito H. Chemical amplification resists for microlithography. Adv Polym Sci, 2005, 172: 37–245

    Article  Google Scholar 

  11. Krebs F C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol Energy Mater Sol Cells, 2009, 93: 394–412

    Article  Google Scholar 

  12. Zhang Y L, Chen Q D, Xia H, et al. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5: 435–448

    Article  Google Scholar 

  13. Steinhart M, Wendorff J H, Wehrspohn R B. Nanotubes à la carte: Wetting of porous templates. ChemPhysChem, 2003, 4: 1171–1176

    Article  Google Scholar 

  14. Sun Y M, Steinhart M, Zschech D, et al. Diameter-dependence of the morphology of PS-b-PMMA nanorods confined within ordered porous alumina templates. Macromol Rapid Commun, 2005, 26: 369–375

    Article  Google Scholar 

  15. Zhang M F, Dobriyal P, Chen J T, et al. Wetting transition in cylindrical alumina nanopores with polymer melts. Nano Lett, 2006, 6: 1075–1079

    Article  Google Scholar 

  16. Cannon J P, Beardena S D, Goldb S A. Effect of wetting solvent on poly(3-hexylthiophene) (P3HT) nanotubles fabricated via template wetting. Synth Met, 2010, 160: 2623–2627

    Article  Google Scholar 

  17. Tian W, Yung K L, Xu Y, et al. Beta-cyclodextrin and its hyperbranched polymers-induced micro/nanopatterns and tunable wettability on polymer surfaces. Nanoscale, 2011, 3: 5147–5155

    Article  Google Scholar 

  18. Belova V, Gorin D A, Shchukin D G, et al. Selective ultrasonic cavitation on patterned hydrophobic surfaces. Angew Chem Int Ed, 2010, 49: 7129–7133

    Article  Google Scholar 

  19. Cao B Y, Li Y W, Kong J, et al. High thermal conductivity of polyethylene nanowire arrays fabricated by an improved nanoporous template wetting technique. Polymer, 2011, 52: 1711–1715

    Article  Google Scholar 

  20. Tao L S, Desai T A. Aligned arrays of biodegradable poly(ɛ-capro-lactone) nanowires and nanofibers by template synthesis. Nano Lett, 2007, 7: 1463–1468

    Article  Google Scholar 

  21. Yun H, Kim W S, Kim K H, et al. Highly enhanced interfacial adhesion properties of steel-polymer composites by dot-shaped surface patterning. J Appl Phys, 2011, 109: 074302

    Article  Google Scholar 

  22. Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B, 2000, 62: 13104

    Article  Google Scholar 

  23. Li J, Cassell A, Delzeit L, et al. Novel three-dimensional electrodes: Electrochemical properties of carbon nanotube ensembles. J Phys Chem B, 2002, 106: 9299–9305

    Article  Google Scholar 

  24. Liu H, Li S H, Zhai J, et al. Self-assembly of large-scale micropatterns on aligned carbon nanotube films. Angew Chem Int Ed, 2004, 43: 1146–1149

    Article  Google Scholar 

  25. Liu S J, Dung Y T. Hot embossing precise structure onto plastic plates by ultrasonic vibration. Polym Eng Sci, 2005, 45: 915–925

    Article  Google Scholar 

  26. Mekaru H, Nakamura O, Maruyama O, et al. Development of precision transfer technology of atmospheric hot embossing by ultrasonic vibration. Microsyst Tech, 2007, 13: 385–391

    Article  Google Scholar 

  27. Lin C H, Chen R S. Ultrasonic nanoimprint lithography: A new approach to nanopatterning. J Microlith Microfab Microsyst, 2006, 5: 011003

    Google Scholar 

  28. Lee C H, Jung P G, Lee S M, et al. Replication of polyethylene nano-micro hierarchical structures using ultrasonic forming. J Micromech Microeng, 2010, 20: 035018

    Article  Google Scholar 

  29. Li S C, Lu L N. Melt rheological properties of reactive compatibilized HDPE/PET blends. J Appl Polym Sci, 2008, 108: 3559–3564

    Article  Google Scholar 

  30. Wu Z, Petzold A, Henze T, et al. Temperature and molecular weight dependent hierarchical equilibrium structures in semiconducting poly(3-hexylthiophene). Macromolecules, 2010, 43: 4646–4653

    Article  Google Scholar 

  31. Lee D J, Kim H M, Song Y S, et al. Water droplet bouncing and superhydrophobicity induced by multiscale hierarchical nanostructure. ACS Nano, 2012, 6: 7656–7664

    Article  Google Scholar 

  32. Marmur A. Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be? Langmuir, 2003, 19: 8343–8348

    Article  Google Scholar 

  33. Baek S J, Park J B, Lee W J, et al. A facile method to prepare regioregular poly(3-hexylthiophene) nanorod arrays using anodic aluminium oxide templates and capillary force. New J Chem, 2009, 33: 986–990

    Article  Google Scholar 

  34. Byun J, Kim Y, Jeon G, et al. Ultrahigh density array of free-standing poly(3-hexylthiophene) nanotubes on conducting substrates via solution wetting. Macromolecules, 2011, 44: 8558–8562

    Article  Google Scholar 

  35. Wang J H, Min G Q, Song Z T, et al. Solvent-infiltration imprint lithography: A novel method to prepare large area poly(3-hexylthiophene) micro/nano-patterns. J Mater Chem, 2012, 22: 21154–21158

    Article  Google Scholar 

References

  1. Zhang Z B, Luo Y, Wang X D, et al. A low temperature ultrasonic bonding method for PMMA microfluidic chips. Microsyst Tech, 2010, 16: 533–541

    Article  Google Scholar 

  2. Liu S J, Dung Y T. Hot embossing precise structure onto plastic plates by ultrasonic vibration. Polym Eng Sci, 2005, 45: 915–925

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Tian or V. A. L. Roy.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, W., Huang, L., Wang, D. et al. A general, rapid and solvent-free approach to fabricating nanostructured polymer surfaces. Sci. China Technol. Sci. 57, 2328–2333 (2014). https://doi.org/10.1007/s11431-014-5647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-014-5647-5

Keywords

Navigation