Skip to main content
Log in

Parallel architecture and optimization for discrete-event simulation of spike neural networks

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Spike neural networks are inspired by animal brains, and outperform traditional neural networks on complicated tasks. However, spike neural networks are usually used on a large scale, and they cannot be computed on commercial, off-the-shelf computers. A parallel architecture is proposed and developed for discrete-event simulations of spike neural networks. Furthermore, mechanisms for both parallelism degree estimation and dynamic load balance are emphasized with theoretical and computational analysis. Simulation results show the effectiveness of the proposed parallelized spike neural network system and its corresponding support components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goddard N H, Hood G. Parallel Genesis for Large-scale Modeling. New York: Plenum Press, 1997

    Google Scholar 

  2. Bower J M, Beeman D, Wylde A M. The book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System. New York: Springer-Verlag, 1998

    Google Scholar 

  3. Migliore M. Parallel network simulations with NEURON. J Comput Neurosci, 2006, 21(2): 119–129

    Article  MathSciNet  MATH  Google Scholar 

  4. Carnevale N T, Hines M L. The NEURON Book. Cambridge: Cambridge University Press, 2006

    Book  Google Scholar 

  5. Delorme A. SpikeNET: A simulator for modeling large networks of integrate and fire neurons. Neurocomputing, 1999, 26: 989–996

    Article  Google Scholar 

  6. Davison A P. PyNN: a common interface for neuronal network simulators. Front Neuroinf, 2008, 2: 1858–1876

    Google Scholar 

  7. Goodman D, Brette R. Brian: a simulator for spiking neural networks in Python. Front Neuroinf, 2008, 2: 138–147

    Article  Google Scholar 

  8. Goodman D F, Brette R. The brian simulator. Front Neurosci, 2009, 3(2): 192–201

    Article  Google Scholar 

  9. Gewaltig M O, Diesmann M. NEST (neural simulation tool). Scholarpedia, 2007, 2(4): 1430–1437

    Article  Google Scholar 

  10. Eppler J M. PyNEST: a convenient interface to the NEST simulator. Frontiers Neuroinf, 2008. 2: 372–388

    Google Scholar 

  11. Alamdari A S. Biological Neural Networks (BNNs) Toolbox for MATLAB: User Guide. General Public License, 2004

  12. Markram H. The blue brain project. Nature Rev Neurosci, 2006, 7(2): 153–160

    Article  MathSciNet  Google Scholar 

  13. Meier K. The FACETS Project. Wikipedia, 2005, 3(3): 202–215

    Google Scholar 

  14. Brette R. Simulation of networks of spiking neurons: A review of tools and strategies. J Comput Neurosci, 2007, 23(3): 349–398

    Article  MathSciNet  Google Scholar 

  15. Buyya, R. High Performance Cluster Computing: Architectures and Systems, vol 1. Upper SaddleRiver, NJ: Prentice Hall, 1999

    Google Scholar 

  16. Strey A. A comparison of OpenMP and MPI for neural network simulations on a SunFire 6800. Adv Parallel Comput, 2004. 13: 201–208

    Article  Google Scholar 

  17. Morrison A. Advancing the boundaries of high-connectivity network simulation with distributed computing. Neural Comput, 2005, 17(8): 1776–1801

    Article  MATH  Google Scholar 

  18. Nageswaran J M, Dutt N. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Neural Networks, 2009, 22(5): 791–800

    Article  Google Scholar 

  19. Cheung K, Schultz S R, Leong P H. A parallel spiking neural network simulator. International Conference on Field-Programmable Technology. Sydney: ACM, 2009. 78–91

    Google Scholar 

  20. Hennessy J L, Patterson D A, Goldberg D. Computer Architecture: A Quantitative Approach. San Francisco: Morgan Kaufmann. 2003

    Google Scholar 

  21. Pacheco P, Camperi M, Uchino T. Parallel neurosys: A system for the simulation of very large networks of biologically accurate neurons on parallel computers. Neurocomputing, 2000, 32: 1095–1102

    Article  Google Scholar 

  22. Khan M M. SpiNNaker: mapping neural networks onto a massively-parallel chip multiprocessor. IEEE International Joint Conference on Neural Networks. Hong Kong: IEEE, 2008. 2849–2855

    Google Scholar 

  23. Pecevski D, Natschl T, Schuch K. PCSIM: a parallel simulation environment for neural circuits fully integrated with Python. Front Neuroinf, 2009, 3: 113–124

    Google Scholar 

  24. Plesser H. Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers. European Conference on Parallel and Distributed Computing. Rennes: IRISA, 2007. 672–681

    Google Scholar 

  25. Wilson E C, Goodman P H, Harris F C. Implementation of a biologically realistic parallel neocortical-neural network simulator. Proceedings of the 10th SIAM Conference on Parallel Process for Scientific Computing. Philadelphia: SIAM, 2001. 12–23

    Google Scholar 

  26. Nageswaran J M. Efficient simulation of large-scale spiking neural networks using CUDA graphics processors. International Joint Conference on Neural Networks. Atlanta: IEEE, 2009. 287–295

    Google Scholar 

  27. Hines M L, Eichner H, Schurmann F, Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J Comput Neurosci, 2008, 25(1): 203–210

    Article  MathSciNet  Google Scholar 

  28. Lobb C J. Parallel event-driven neural network simulations using the Hodgkin-Huxley neuron model. Workshop on Principles of Advanced and Distributed Simulation. Monterey: IEEE, 2005. 102–108

    Google Scholar 

  29. Mohraz K, Schott U, Pauly M. Parallel simulation of pulse-coded neural networks. IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics. Berlin: IEEE, 1997. 23–28

    Google Scholar 

  30. Izhikevich E M. Simple model of spiking neurons. IEEE T Neural Network, 2004, 14(6): 1569–1572

    Article  MathSciNet  Google Scholar 

  31. Vreeken J. Spiking neural networks, an introduction. Institute for Information and Computing Sciences, Utrecht University Technical Report UU-CS-2003-008, 2002

  32. Gerstner W, Kistler W M. Spiking neuron models. vol 15. Cambridge, UK: Cambridge University Press, 2002

    Book  Google Scholar 

  33. Yang X J. The TianHe-1A supercomputer: its hardware and software. J Comput Sci Technol, 2011. 26(3): 344–351

    Article  Google Scholar 

  34. Brette R. Exact simulation of integrate-and-fire models with exponential currents. Neural Comput, 2007, 19(10): 2604–2609

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaiDa Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Zhang, B., Wu, J. et al. Parallel architecture and optimization for discrete-event simulation of spike neural networks. Sci. China Technol. Sci. 56, 509–517 (2013). https://doi.org/10.1007/s11431-012-5084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-5084-2

Keywords

Navigation