Skip to main content
Log in

Modeling the global ionospheric total electron content with empirical orthogonal function analysis

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In the present work we model the global ionospheric total electron content (TEC) with the analysis of empirical orthogonal functions (EOF). The obtained statistical eigen modes, which makeup the modeled TEC, consist of two factors: the eigen vectors mapping TEC patterns at latitude and longitude (or local time LT), and the corresponding coefficients displaying the TEC variations in different time scales, i.e., the solar cycle, the yearly (annual and semiannual) and the diurnal universal time variations. It is found that the EOF analysis can separate the TEC variations into chief processes and the first two modes illustrate the most of the ionospheric climate properties. The first mode contains both the semiannual component which shows the semiannual ionospheric anomaly and the annual component which shows the annual or non-seasonal ionospheric anomaly. The second mode contains mainly the annual component and shows the normal seasonal ionospheric variation at most latitudes and local time sectors. The annual component in the second mode also manifests seasonal anomaly of the ionosphere at higher mid-latitudes around noontime. It is concluded that the EOF analysis, as a statistical eigen mode method, is resultful in analyzing the ionospheric climatology hence can be used to construct the empirical model for the ionospheric climatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schunk R W, Sojka J J, Schunk R W. Ionospheric Models. In: Kohl H, Ruester R, Schlegel K, eds. Modern Ionospheric Science. European Geophysical Society, 1996. 181–215

  2. Cander L R, Leitinger R, Levy M F. Ionospheric Models Including the Auroral Environment. Workshop on Space Weather. The Netherlands: European Space Agency, 1999. 135–142

    Google Scholar 

  3. Bilitza D. Ionospheric Models for Radio Propagation Studies. The Review of Radio Science. Piscataway: IEEE Press, 2002. 625–679

    Google Scholar 

  4. Bent R B, Llewellyn S K, Walloch M K. Description and Evaluation of the Bent Ionospheric Model, Space & Missile Systems Organization. Report SAMSO TR-72-239, Los Angeles, California, 1972

  5. Bent R B, Llewellyn S K, Nesterczuk G, et al. The Development of a Highly Successful Worldwide Empirical Ionosphere Model and Its Use in Certain Aspects of Space Communications and World-Wide Total Electron Content Investigations. In: Goodman J M, ed. Effects of the Ionosphere on Space Systems and Communications. Springfield: National Technical Information Service, 1975. 13–28

    Google Scholar 

  6. Rawer K, Ramakrishnan S, Bilitza D. International Reference Ionosphere 1978. Brussels: International Union of Radio Science, 1978

    Google Scholar 

  7. Rawer K, Lincoln J V, Conkright R O, eds. International Reference Ionosphere IRI-79. Report UAG-82, Boulder, Colorado, World Data Center A for Solar-Terrestrial Physics, 1981

  8. Bilitza D. International Reference Ionosphere 1990. NSSDC Report 90-22. National Space Science Data Center, Greenbelt, USA, 1990

    Google Scholar 

  9. Bilitza D. International Reference Ionosphere 2000. Radio Sci, 2001, 36: 261–275

    Article  Google Scholar 

  10. Hochegger G, Nava B, Radicella S, et al. A Family of Ionospheric Models for Different Uses. Physics and Chemistry of the Earth, Part C, 2000, 25: 307–310

    Article  Google Scholar 

  11. Radicella S M, Leitinger R. The Evolution of the DGR Approach to Model Electron Density Profiles. Adv Space Res, 2001, 27: 35–40

    Article  Google Scholar 

  12. Leitinger R, Radicella S, Hochegger G, et al. Diffusive Equilibrium Models for the Height Region above the F2 Peak. Adv Space Res, 2002, 29: 809–814

    Article  Google Scholar 

  13. Klobuchar J A. Ionospheric Time Delay Algorithm for Single Frequency GPS Users. IEEE T Aeros Electron Syst, 1987, 23: 325–331

    Article  Google Scholar 

  14. Brown L D, Daniel R E, Fox M W, et al. Evaluation of six ionospheric models as predictors of total electron content. Radio Sci, 1991, 26: 1007–1015

    Article  Google Scholar 

  15. Coïsson P, Radicell S M, Leitinger R, et al. Are models predicting a realistic picture of vertical, total electron content. Radio Sci, 2004, 39: RS1S14, doi:10.1029/2002RS002823

    Article  Google Scholar 

  16. Poulter E M, Hargreaves J K. A harmonic analysis of ATS-6 electron content observation at Lancaster, UK, during 1975–6. Ann Geophys, 1981, 37: 405–415

    Google Scholar 

  17. Baruah S, Bhuyan P K, Tyagi T R. Modeling of ionospheric electron content over Lunping-An empirical approach. Indian J Radio Space Phys, 1993, 22: 325–330

    Google Scholar 

  18. Jain S, Vijay S K, Gwal A K. An empirical model for IEC over Lunping. Adv Space Res, 1996, 18: 263–266

    Article  Google Scholar 

  19. Bradley P. PRIME (Prediction and Retrospective Ionospheric Modelling over Europe), Action 238, Final Report, Rutherford Appleton Laboratory, Chilton Didcot, UK, European Cooperation in the field of Scientific and Technical Research (COST), 1999

  20. Hanbaba R. Improved Quality of Services in Ionospheric Telecommunication Systems Planning and Operation, Action 251, Final Report, Warsaw, Poland, Space Research Centre, European Cooperation in the field of Scientific and Technical Research (COST), 1999

  21. Gulyaeva T L. Regional Analytical Model of Ionospheric Total Electron Content: Monthly Mean and Standard Deviation. Radio Science, 1999, 34: 1507–1512

    Article  Google Scholar 

  22. Chen Y, Wan W, Liu L, et al. A statistical TEC model based on the observation at Wuhan Ionospheric Observatory. Chin J Space Sci, 2002, 34: 27–35

    Google Scholar 

  23. Unnikrishnan K, Balachandran R, Venugopal C. Harmonic analysis and an empirical model for TEC over Palehua. J Atmos Sol Terr Phys, 2002, 64: 1833–1840

    Article  Google Scholar 

  24. Mao T, Wan W, Liu L. An EOF based empirical model of TEC over Wuhan. Chin J Geophys, 2005, 48: 827

    Google Scholar 

  25. Mao T, Wan W, Yue X, et al. An empirical orthogonal function model of total electron content over China. Radio Sci, 2008, 43, RS2009, doi:10.1029/2007RS003629

    Article  Google Scholar 

  26. Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci, 1998, 33: 565–582

    Article  Google Scholar 

  27. Orús R, Hernández-Pajares M, Juan J M, et al. Performance of different TEC models to provide GPS ionospheric corrections. J Atmos Sol Terr Phys, 2002, 64: 2055–2062

    Article  Google Scholar 

  28. Orús R, Herna’ndez-Pajares M, Juan J M, et al. Improvement of global ionospheric VTEC maps by using Kriging interpolation technique. J Atmos Sol Terr Phys, 2005, 67: 1598–1609

    Article  Google Scholar 

  29. Storch H V, Zwiers F W. Statistical Analysis in Climate Research. Cambridge University Press, 2002

  30. Zhao B, Wan W, Liu L, et al. Statistical characteristics of the total ion density in the topside ionosphere during the period 1996–2004 using empirical orthogonal function (EOF) analysis. Ann Geophy, 2005, 23: 3615–3631

    Article  Google Scholar 

  31. Liu C, Zhang M L, Wan W, et al. Modeling M(3000)F2 based on empirical orthogonal function analysis method. Radio Sci, 2008, 43: RS1003, doi:10.1029/2007RS003694

    Article  Google Scholar 

  32. Zhang M L, Liu C, Wan W, et al. A global model of the ionospheric F2 peak height based on EOF analysis. Ann Geophys, 2009, 27: 3203–3212

    Article  Google Scholar 

  33. Zhang M L, Liu C, Wan W, et al. Evaluation of global modeling of M(3000)F2 and hmF2 based on alternative empirical orthogonal function expansions. Adv Space Res, 2010, 46: 1024–1031

    Article  Google Scholar 

  34. Hernández-Pajares M. Performance of IGS Ionosphere TEC Maps. IGS IONO WG Report, Research Group of Astronomy and Geomatics, Barcelona Technical University of Catalonia (gAGE/UPC), Spain, 2003

  35. Iijima B A, Harris I L, Ho C M, et al. Automated daily process for global ionospheric total electron content maps and satellite ocean altimeter ionospheric calibration based on Global Positioning System data. J Atmos Sol Terr Phys, 1999, 61: 1205

    Article  Google Scholar 

  36. Afraimovich E L, Astafyeva E I, Zhivetiev I V. Solar activity and global electron content. Doklady Earth Sci, 2006, 409: 921–924

    Article  Google Scholar 

  37. She C, Wan W, Xu G. Climatological analysis and modeling of the ionospheric global electron content. Chin Sci Bull, 2008, 53: 282–288

    Article  Google Scholar 

  38. Rishbeth H, Muller-Wodar I C F, Zou L, et al. Annual and semiannual variations in the ionospheric F2-layer: II. Physical discussion. Ann Geophys, 2000, 18: 945–956

    Article  Google Scholar 

  39. Rishbeth H, Muller-Wodarg I C F. Why is there more ionosphere in January than in July? The annual asymmetry in the F2-layer. Ann Geophys, 2006, 24: 3293–3311

    Article  Google Scholar 

  40. Zou L, Rishbeth H, Muller-Wodarg I C F, et al. Annual and semiannual variations in the ionospheric F2-layer: I. Modelling. Ann Geophys, 2000, 18: 927–944

    Article  Google Scholar 

  41. Yu T, Wan W, Liu L, et al. Global scale annual and semi-annual variations of daytime NmF2 in the high solar activity years. J Atmosph Solar-Terr Phys, 2004, 66: 1691–1701

    Article  Google Scholar 

  42. Liu L, Zhao B, Wan W, et al. Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology. Ionosphere, and Climate mission radio occultation measurements. J Geophy Res, 2009, 114, doi:10.1029/2008JA013819

  43. Codrescu M V, Palo S E, Zhang X, et al. TEC climatology derived from TOPEX/POSEIDON measurements. J Atmos Sol Terr Phys, 1999, 61: 281–298

    Article  Google Scholar 

  44. Codrescu M V, Beierle K L, Fuller-Rowell T J, et al. More total electron content climatology from TOPEX/Poseidon measurements. Radio Sci, 2001, 36: 325–333

    Article  Google Scholar 

  45. Jee G, Schunk R W, Scherliess L. Analysis of TEC data from the TOPEX/Poseidon mission. J Geophys Res, 2004, 109: A01301, doi:10.1029/2003JA010058

  46. Mendillo M, Huang C L, Pi X, et al. The global ionospheric asymmetry in total electron content. J Atmos Sol Terr Phys, 2005, 67: 1377–1387

    Article  Google Scholar 

  47. Rishbeth H. How the thermospheric circulation affects the ionospheric F2-layer. J Atmos Sol Terr Phys, 1998, 60 (14): 1385–1402

    Article  Google Scholar 

  48. Fuller-Rowell T J. The “thermospheric spoon”: A mechanism for the semiannual density variation. J Geophys Res, 1998, 103: 3951–3956

    Article  Google Scholar 

  49. Zeng Z, Burns A, Wang W, et al. Ionospheric annual asymmetry observed by the COSMIC radio occultation measurements and simulated by the TIEGCM. J Geophys Res, 2008, 113: A07305, doi: 10.1029/2007JA012897

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiXing Wan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, W., Ding, F., Ren, Z. et al. Modeling the global ionospheric total electron content with empirical orthogonal function analysis. Sci. China Technol. Sci. 55, 1161–1168 (2012). https://doi.org/10.1007/s11431-012-4823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4823-8

Keywords

Navigation